Đến nội dung

Hình ảnh

[Lớp 10] SAI LẦM Ở ĐÂU?

* * * * * 4 Bình chọn sai lầm ở đâu?

  • Please log in to reply
Chủ đề này có 21 trả lời

#1
E. Galois

E. Galois

    Chú lùn thứ 8

  • Quản lý Toán Phổ thông
  • 3861 Bài viết

Không gì quý bằng học được từ những sai lầm của chính mình. Tôpic này dùng để post các bài giải, lập luận sai lầm về kiến thức trong giải toán 10. Hi vọng đây là topic bổ ích cho các em HS lớp 10.

Chúng ta có 1 vài lưu ý sau:

- KHÔNG post các nghịch lý ở đây, vì diễn đàn đã có chỗ dành riêng cho các nghịch lí ở đây: http://diendantoanho...p?showforum=416
- Các mem nêu đề bài và lời giải sai nhớ đánh số thứ tự bài toán
- Các mem khác chỉ ra lỗi sai và post lời giải đúng, nên rút ra kết luận để khắc sâu, nắm vững hơn kiến thức.
- Giải xong bài đang có mới nên post tiếp bài sau, tránh post tràn lan.
- Bài viết Spam, chém gió, các ĐHV THPT cứ thẳng tay delete.


1) Xem cách đăng bài tại đây
2) Học gõ công thức toán tại: http://diendantoanho...oạn-thảo-latex/
3) Xin đừng đặt tiêu đề gây nhiễu: "Một bài hay", "... đây", "giúp tớ với", "cần gấp", ...
4) Ghé thăm tôi tại 
http://Chúlùnthứ8.vn

5) Xin đừng hỏi bài hay nhờ tôi giải toán. Tôi cực gà.


#2
CD13

CD13

    Thượng úy

  • Thành viên
  • 1456 Bài viết
Bài toán 1:
Giải bất phương trình: $(2x+1)\sqrt{x+1} \ge 0$

Lời giải:
Điều kiện bất phương trình là $x \ge -1$
Do $\sqrt{x+1} \ge 0$ nên bpt tương đương với $2x+1 \ge 0 \Leftrightarrow x \ge -\frac{1}{2}$
Vậy nghiệm của bpt là $S=[-\frac{1}{2}; + \infty )$

#3
Ispectorgadget

Ispectorgadget

    Nothing

  • Quản lý Toán Phổ thông
  • 2946 Bài viết

Bài toán 1:
Giải bất phương trình: $(2x+1)\sqrt{x+1} \ge 0$

Lời giải:
Điều kiện bất phương trình là $x \ge -1$
Do $\sqrt{x+1} \ge 0$ nên bpt tương đương với $2x+1 \ge 0 \Leftrightarrow x \ge -\frac{1}{2}$
Vậy nghiệm của bpt là $S=[-\frac{1}{2}; + \infty )$

Bài này còn thiếu nghiệm $x=-1$ nữa ạ! :D

►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫


#4
tieulyly1995

tieulyly1995

    Sĩ quan

  • Thành viên
  • 435 Bài viết
Bài toán 2 :
Tìm giá trị nhỏ nhất của $S= a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
trong đó : $a,b,c $ là các số dương thỏa mãn $a+b+c \leq \frac{3}{2}$

giải :
Áp dụng Bđt Cauchy cho 6 số dương, ta có :
$S\geq 6\sqrt[6]{abc.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}=6$
$\Rightarrow minS=6$

Bài viết đã được chỉnh sửa nội dung bởi tieulyly1995: 05-04-2012 - 12:55


#5
T M

T M

    Trung úy

  • Thành viên
  • 926 Bài viết

Bài toán 2 :
Tìm giá trị nhỏ nhất của $S= a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
trong đó : $a,b,c $ là các số dương thỏa mãn $a+b+c \leq \frac{3}{2}$

giải :
Áp dụng Bđt Cauchy cho 6 số dương, ta có :
$S\geq 6\sqrt[6]{abc.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}=6$
$\Rightarrow minS=6$



Sai lầm của bài toán là dấu bằng không xảy ra.

Lời giải:

Dự đoán dấu bằng xảy ra $\Leftrightarrow a=b=c=\frac{1}{2}$.

Theo bất đẳng thức Cauchy ta có

$4a+\frac{1}{a}\geq4$. Hoàn toàn tương tự $\Rightarrow VT \geq 12 -3.\frac{3}{2}=\frac{15}{2}$.
Dấu $=\Leftrightarrow a=b=c=\frac{1}{2}$

Bài viết đã được chỉnh sửa nội dung bởi luxubuhl: 06-04-2012 - 12:33

ĐCG !

#6
tieulyly1995

tieulyly1995

    Sĩ quan

  • Thành viên
  • 435 Bài viết

Sai lầm của bài toán là dấu bằng không xảy ra.
$4a+\frac{1}{a}\geq2$.

Bạn đánh nhầm chỗ này, phải là $4a+\frac{1}{a}\geq4$.

#7
T M

T M

    Trung úy

  • Thành viên
  • 926 Bài viết
Bài toán 3

Giải bất phương trình $(x^2-4x)\sqrt{2x^2-3x-2} \geq 0$


Lời giải



$BPT \Leftrightarrow \left\{\begin{matrix}2x^2-3x-2\geq0&\\
x^2-4x\geq0&\\ \end{matrix}\right.\left\{\begin{matrix}x\in(-\infty;\frac{-1}{2}]\cup[2;+\infty] &\\ x\in (-\infty;0]\cup[4;+\infty) &\\\end{matrix}\right.\Leftrightarrow x\in(-\infty;\frac{-1}{2}]\cup [4;+\infty)$

Bài viết đã được chỉnh sửa nội dung bởi luxubuhl: 07-04-2012 - 20:03

ĐCG !

#8
Ispectorgadget

Ispectorgadget

    Nothing

  • Quản lý Toán Phổ thông
  • 2946 Bài viết

Bài toán 3

Giải bất phương trình $(x^2-4x)\sqrt{2x^2-3x-2} \geq 0$


Lời giải



$BPT \Leftrightarrow \left\{\begin{matrix}2x^2-3x-2\geq0&\\
x^2-4x\geq0&\\ \end{matrix}\right.\left\{\begin{matrix}x\in(-\infty;\frac{-1}{2}]\cup[2;+\infty] &\\ x\in (-\infty;0]\cup[4;+\infty) &\\\end{matrix}\right.\Leftrightarrow x\in(-\infty;\frac{-1}{2}]\cup [4;+\infty)$

Bài này thiếu trường hợp $2x^2-3x-2=0$ dẫn đến thiếu nghiệm.

►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫


#9
Gioi han

Gioi han

    Sĩ quan

  • Thành viên
  • 384 Bài viết
Bài toán 4
Cho © :$x^{2}+y^{2}-2x+2y-10=0$ ,tâm $I$ .Lập pt đường thẳng qua $M\left ( 1;1 \right )$ cắt © tại $AB$ sao cho ${S_{ABI}}$ đạt giá trị lớn nhất.
Giải: ${S_{ABI}}= \frac{1}{2}IA.IB .sinI=\frac{1}{2}R^{2}.sinI$
Ta có : $sinI\leq 1\Rightarrow {S_{ABI max}}^{}=\frac{1}{2}R^{2} \Leftrightarrow sinI =1 \Leftrightarrow IH=\frac{R}{\sqrt{2}}=\sqrt{6}$
$\Rightarrow d(I;AB)=\sqrt{6}$
Gọi pt AB:$a(x-1) +b(y-1)=0 \left ( a^{2} +b^{2}\neq 0\right )$
$d(I;AB)=\sqrt{6}$ $\Rightarrow 2a^{2}+ 6b^{2}=0 \Rightarrow a=b=0$ (ko thoả mãn)
KL: Không tồn tại pt AB để ${S_{ABI}}^{}$ đạt giá trị lớn nhất.

Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 12-11-2012 - 20:21


#10
CD13

CD13

    Thượng úy

  • Thành viên
  • 1456 Bài viết

Ta có : $sinI\leq 1\Rightarrow {S_{ABI max}}^{}=\frac{1}{2}R^{2} \Leftrightarrow sinI =1$

Đoạn này không thể xảy ra vì đường thẳng đi qua $M$ cắt $(C )$ tại $A, B$ tạo nên góc $\widehat{AIB}$ tù. Các em có thể giải thích điều này!

Bài viết đã được chỉnh sửa nội dung bởi ongtroi: 28-06-2012 - 18:00


#11
CD13

CD13

    Thượng úy

  • Thành viên
  • 1456 Bài viết
Khi đọc sách "Chuyên đề BĐT" của Th.s Võ Giang Giai đến trang 82 tôi thấy không hài lòng lắm lời giải này:
Bài toán 5
Đề:
Cho $a,b,c \in [\frac{1}{2};2]$. Chứng minh rằng: $(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \le \frac{225}{16}$

(Theo tác giả thì đây là Olympic Đài Loan)?

Giải:

Ta có: $a \in [\frac{1}{2};2] \to (a-\frac{1}{2})(a-2) \le 0 \to a^2-\frac{5}{2}a+1 \le 0 \to a+\frac{1}{a} \le \frac{5}{2}$
Tương tự:
$b+\frac{1}{b} \le \frac{5}{2}\\ \\ c+\frac{1}{c} \le \frac{5}{2}$

Do đó theo BĐT Cauchy:

$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\le \frac{1}{4}(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2 \le \frac{1}{4}(3.\frac{5}{2})^2=\frac{225}{16}$.

Giải xong tác giả còn mở rộng thêm bài toán dạng tổng quát, tuy nhiên lời giải trên Th.s đã sai vậy thì lời giải tổng quát có ý nghĩa gì!
Bạn hãy tìm ra lỗi sai này nhé!

Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 12-11-2012 - 20:22


#12
Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết
Vấn đề ở đây là đẳng thức xảy ra khi nào?

Trả lời: Đẳng thức không xảy ra khi ta thay các giá trị biên của $a,b,c$. Thật sự bài toán tương tự đã có trên Diễn đàn:

1. http://diendantoanho...showtopic=64569

2. http://diendantoanho...showtopic=69060

#13
Gioi han

Gioi han

    Sĩ quan

  • Thành viên
  • 384 Bài viết

Đoạn này không thể xảy ra vì đường thẳng đi qua $M$ cắt $(C )$ tại $A, B$ tạo nên góc $\widehat{AIB}$ tù. Các em có thể giải thích điều này!

Dạ đúng rồi ạ,xin cho lời giải đúng.

Cho © :$x^{2}+y^{2}-2x+2y-10=0$ ,tâm $I$ .Lập pt đường thẳng qua $M\left ( 1;1 \right )$ cắt © tại $AB$ sao cho ${S_{ABI}}$ đạt giá trị lớn nhất.
Giải: ${S_{ABI}}= \frac{1}{2}IA.IB .sinI=\frac{1}{2}R^{2}.sinI$
Ta có : $sinI\leq 1\Rightarrow {S_{ABI max}}^{}=\frac{1}{2}R^{2} \Leftrightarrow sinI =1 \Leftrightarrow IH=\frac{R}{\sqrt{2}}=\sqrt{6}$
$\Rightarrow d(I;AB)=\sqrt{6}$
Gọi pt AB:$a(x-1) +b(y-1)=0 \left ( a^{2} +b^{2}\neq 0\right )$
$d(I;AB)=\sqrt{6}$ $\Rightarrow 2a^{2}+ 6b^{2}=0 \Rightarrow a=b=0$ (ko thoả mãn)
KL: Không tồn tại pt AB để ${S_{ABI}}^{}$ đạt giá trị lớn nhất.


Lời giải đúng:
đk $IH$ :$0\leq IH\leq IM$ hay $0\leq IH\leq 2$
$S_{AIB}=\frac{1}{2}IH.AB=IH.\sqrt{R^{2}-IH^{2}}$$=\sqrt{R^{2}.IH^{2}-IH^{4}}$
Đặt $IH^{2} = x$

xét hs : $f(x)=\sqrt{12x-x^{2}}$
$x \epsilon \left [ 0;2 \right ]$
đặt $t =x^{2} => t \epsilon \left [ 0;4 \right ]$
ta có : $g(t)=12t-t^{2}$
$g(t)'=12-2t$
vẽ bảng biến thiên ta có
$0\leq g(t)\leq 12$ $\Rightarrow f(x) _{max} \Leftrightarrow x = 2$
$\Leftrightarrow IH = 2 = IM$
$\Leftrightarrow H \equiv M$
$\Rightarrow AB$ qua $M$ và vuông góc $IM$

Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 12-11-2012 - 20:22


#14
khanh3570883

khanh3570883

    Trung úy

  • Thành viên
  • 905 Bài viết

Khi đọc sách "Chuyên đề BĐT" của Th.s Võ Giang Giai đến trang 82 tôi thấy không hài lòng lắm lời giải này:

Đề:
Cho $a,b,c \in [\frac{1}{2};2]$. Chứng minh rằng: $(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \le \frac{225}{16}$

(Theo tác giả thì đây là Olympic Đài Loan)?


Giải:

Ta có: $a \in [\frac{1}{2};2] \to (a-\frac{1}{2})(a-2) \le 0 \to a^2-\frac{5}{2}a+1 \le 0 \to a+\frac{1}{a} \le \frac{5}{2}$
Tương tự:
$b+\frac{1}{b} \le \frac{5}{2}\\ \\ c+\frac{1}{c} \le \frac{5}{2}$

Do đó theo BĐT Cauchy:

$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\le \frac{1}{4}(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2 \le \frac{1}{4}(3.\frac{5}{2})^2=\frac{225}{16}$.

Giải xong tác giả còn mở rộng thêm bài toán dạng tổng quát, tuy nhiên lời giải trên Th.s đã sai vậy thì lời giải tổng quát có ý nghĩa gì!
Bạn hãy tìm ra lỗi sai này nhé!

Em nghĩ lời giải ở đây là đúng bởi vì đề bài chỉ yêu cầu chứng minh điều đó và cũng không yêu cầu là đẳng thức phải xảy ra.
Còn về bài toán mở rộng thì theo em nó là như thế này, từ đó ta cũng thấy $\frac{{225}}{{16}}$ không phải là hằng số tốt nhất. Đây là bài toán ở trong cuốn "Phương pháp dồn biến" của anh "Phan Thành Nam".

Bài toán 6 Cho $0 < p < q$, và n số thực ${x_i} \in \left[ {p;q} \right]$. Chứng minh rằng:
\[\left( {{x_1} + ... + {x_n}} \right)\left( {\frac{1}{{{x_1}}} + ... + \frac{1}{{{x_n}}}} \right) \le {n^2} + \left[ {\frac{{{n^2}}}{4}} \right]\frac{{{{\left( {p - q} \right)}^2}}}{{pq}}\]

Ở đây kí hiệu $\left[ x \right]$ chỉ phần nguyên của số thực x.
Lời giải:
Từ giả thiết ${x_i} \in \left[ {p;q} \right]$, ta dễ dàng đoán rằng: GTLN sẽ đạt được khi ${x_i} \in \left\{ {p;q} \right\}$ với mọi i. Khi đó, giả sử trong n số ${x_i}$ có k số p và n-k số q thì:
$\begin{array}{l}
VT = \left( {kp + \left( {n - k} \right)q} \right)\left( {\frac{k}{q} + \frac{{n - k}}{q}} \right) = {k^2} + {\left( {n - k} \right)^2} + k\left( {n - k} \right)\left( {\frac{p}{q} + \frac{q}{p}} \right) \\
= {n^2} + k\left( {n - k} \right)\frac{{{{\left( {p - q} \right)}^2}}}{{pq}} = {n^2} + \frac{1}{4}\left[ {{n^2} - {{\left( {n - 2k} \right)}^2}} \right]\frac{{{{\left( {p - q} \right)}^2}}}{{pq}} \\
\end{array}$
Vì k nguyên nên ${n^2} - {\left( {n - 2k} \right)^2} \le {n^2}$ (khi n chẵn) và ${n^2} - {\left( {n - 2k} \right)^2} \le {n^2}-1$ (khi n lẻ). Từ đó, ta thu được BĐT thức ban đầu đồng thời chỉ ra trường hợp dấu bằng xảy ra.
Đến đây ta nhận ra: mấu chốt của vấn đề chỉ là nhận xét: GTLN sẽ đạt được khi ${x_i} = p$ hoặc ${x_i} = q$ với mọi i.
Với mọi i, ta xem vế trái là một hàm theo ${x_i}$, ta sẽ chứng tỏ: $f\left( {{x_i}} \right) \le \max \left\{ {f\left( p \right),f\left( q \right)} \right\}$.
Ta có: $f\left( x \right) = Ax + \frac{B}{x} + C$. Để ý:
\[\begin{array}{l}
f\left( {{x_i}} \right) - f\left( p \right) = \left( {{x_i} - p} \right)\left( {A - \frac{B}{{{x_i}p}}} \right) \\
f\left( {{x_i}} \right) - f\left( q \right) = \left( {{x_i} - q} \right)\left( {A - \frac{B}{{{x_i}q}}} \right) \\
\end{array}\]
Từ đó nếu $f\left( {{x_i}} \right) > \max \left\{ {f\left( p \right),f\left( q \right)} \right\}$ thì rõ ràng ${x_i} \notin \left\{ {p,q} \right\}$ và:
\[A - \frac{B}{{{x_i}p}} > 0 > A - \frac{B}{{{x_i}q}} \Rightarrow \frac{B}{{{x_i}p}} < A < \frac{B}{{{x_i}q}}\]
mâu thuẫn p<q. Vậy $f\left( {{x_i}} \right) \le \max \left\{ {f\left( p \right),f\left( q \right)} \right\}$

THẬT THÀ THẲNG THẮN THƯỜNG THUA THIỆT

LƯƠN LẸO LUỒN LỎI LẠI LEO LÊN

 

Một ngày nào đó ta sẽ trở lại và lợi hại hơn xưa


#15
mylinh998

mylinh998

    Binh nhất

  • Thành viên
  • 23 Bài viết

Bài toán 7

Tại sao cách giải của mình lại đi đến mấu thuẫn?

 

Bài toán: Cho tam giác ABC: A(2;0), B(4,1), C(1,2). Viết phương trình đường phân giác trong tại A.

 

Bài giải:

$\overrightarrow{AB}=(2,1), \overrightarrow{AC}=(-1;2)$

 

Gọi (d) là đường phân giác cần tìm có vector chỉ phương $\overrightarrow{u_d}=(a,b)$  $(a^2+b^2\neq 0)$

 

Khi đó, rõ ràng ta có:

 

$\cos (\overrightarrow{AB},\overrightarrow{u_d})=\cos (\overrightarrow{AC},\overrightarrow{u_d})$

 

$\Rightarrow \frac{2a+b}{\sqrt{5}\sqrt{a^2+b^2}}=\frac{-a+2b}{\sqrt{5}\sqrt{a^2+b^2}}$

 

$\Rightarrow 3a=b$ Chọn $a=1,b=3 \Rightarrow (d): x+3y-2=0$

 

Nhưng khi thay tọa độ B và C vào thì B,C nằm cùng phía do với (d). Tại sao nhỉ?????


Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 09-05-2014 - 22:43


#16
A4 Productions

A4 Productions

    Sĩ quan

  • Thành viên
  • 454 Bài viết

mình nhớ công thức góc kia là có trị tuyệt đối mà :D bạn bị thiếu trường hợp đó! đường phân giác phải là đường vuông góc với đường mà bạn giải ra: $3x-y-6=0$


DSC02736_zps169907e0.jpg


#17
E. Galois

E. Galois

    Chú lùn thứ 8

  • Quản lý Toán Phổ thông
  • 3861 Bài viết

Lời giải sai vì $\overrightarrow{n}=(1;3)$ là vector chỉ phương chứ không phải vector pháp tuyến


1) Xem cách đăng bài tại đây
2) Học gõ công thức toán tại: http://diendantoanho...oạn-thảo-latex/
3) Xin đừng đặt tiêu đề gây nhiễu: "Một bài hay", "... đây", "giúp tớ với", "cần gấp", ...
4) Ghé thăm tôi tại 
http://Chúlùnthứ8.vn

5) Xin đừng hỏi bài hay nhờ tôi giải toán. Tôi cực gà.


#18
NhatTruong2405

NhatTruong2405

    Trung sĩ

  • Thành viên
  • 155 Bài viết

$\boxed{\text{Bài toán 8}}$
Tìm các nghiệm thực của phương trình $\left\{\begin{array}{l}a+b=8 \\ab+c+d=23 \\ ad+bc=28 \\ cd=12 \end{array}\right.$
Phương trình (2) trừ phương trình (3) cộng phương trình (4) ta được
$ab+c+d-ad-bc+cd=7$
$\Rightarrow (a-c)(b-d)+c-a+d-b=-1$
$\Rightarrow (a-c-1)(b-d-1)=0$
$\Rightarrow c+d=6$
Mà $cd=12$ nên không có nghiệm c,d $\Rightarrow$ không có a,b
Mà sao em nhẩm được nghiệm (4,4,3,4) vậy ạ :(


Bài viết đã được chỉnh sửa nội dung bởi NhatTruong2405: 25-06-2015 - 18:21


#19
anh1999

anh1999

    Sĩ quan

  • Thành viên
  • 355 Bài viết

Bài toán 8
Tìm các nghiệm thực của phương trình $\left\{\begin{array}{l}a+b=8 \\ab+c+d=23 \\ ad+bc=28 \\ cd=12 \end{array}\right.$
Phương trình (2) trừ phương trình (3) cộng phương trình (4) ta được
$ab+c+d-ad-bc+cd=7$
$\Rightarrow (a-c)(b-d)+c-a+d-b=-1$
$\Rightarrow (a-c-1)(b-d-1)=0$
$\Rightarrow c+d=6$
Mà $cd=12$ nên không có nghiệm c,d $\Rightarrow$ không có a,b
Mà sao em nhẩm được nghiệm (4,4,3,4) vậy ạ :(

Sai ở đây bạn 

Từ cái trên chỉ => $a-c-1=0$ hoặc $b-d-1=0$ thôi

Mình làm 1 cái cái còn lại tương tự 

$a-c-1=0$<=> $c=a-1$

mà $ cd=12 $

Nhận thấy $c=0$ không phải là nghiệm nên ta có $d=\frac{12}{c}=\frac{12}{a-1}$

Mặt khác từ pt1=>b=8-a

Thay vào pt (2) ta có 

$a(8-a)+a-1+\frac{12}{a-1}=23$

<=>$-a^3+10a^2-33a+36=0$

<=>$-(a-4)(a-3)^2=0$

 

 

---------------------

Bạn nên viết hoa đầu dòng và Latex chính xác.


Bài viết đã được chỉnh sửa nội dung bởi anh1999: 21-06-2015 - 14:34

Trần Quốc Anh


#20
NhatTruong2405

NhatTruong2405

    Trung sĩ

  • Thành viên
  • 155 Bài viết

$\boxed{\text{Bài toán 9}}$

Ton tai hay khong nghiem nguyen cua pt:

$x^{12}+y^{12}+z^{12}=2(37^{2012}+2014^{1995})$

Ap dung dinh ly Fermat:

$\left\{\begin{matrix} x^{12}\equiv 0,1(mod13)\\ y^{12}\equiv 0,1(mod13)\\ z^{12}\equiv 0,1(mod13) \end{matrix}\right.$

$\Leftrightarrow x^{12}+y^{12}+z^{12}\equiv 0,1,2,3(mod13)$

Ma ta co theo dinh ly Fermat:

$37^{12}\equiv 1(mod13)$

$\Leftrightarrow 37^{2012}\equiv 9(mod13)$

Va $2014^{12}\equiv 1(mod13)$

$\Leftrightarrow 2014^{1995}\equiv 12(mod13)$

Nen $2(37^{12}+2014^{1995})\equiv 3(mod13)$

Vậy phương trình có nghiệm nguyên

Spoiler


Bài viết đã được chỉnh sửa nội dung bởi NhatTruong2405: 21-07-2015 - 19:10






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: sai lầm ở đâu?

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh