Đến nội dung


Hình ảnh

Đề thi chọn đội tuyển lớp 11 của trường THPT chuyên Lê Quý Đôn (Quảng Trị) (olympic 30/4)


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 caoduylam

caoduylam

    Binh nhất

  • Thành viên
  • 38 Bài viết
  • Giới tính:Nam
  • Đến từ:Khánh Hoà

Đã gửi 31-03-2012 - 20:53

Câu 1: Tìm số nghiệm của hệ phương trình:
$\left\{ {\begin{array}{*{20}{c}}
{{x^2} = {y^2}}\\
{x + {y^2} + 12\sqrt[8]{{{x^2}y}} = 2010}
\end{array}} \right.$
Câu 2: Tìm tất cả bộ ba số nguyên dương $\left( {n;x;y} \right)$ thoả mãn đồng thời hai điều kiện:
a. $n$ và $2010$ nguyên tố cùng nhau.
b. ${\left( {{x^2} + {y^2}} \right)^{2010}} = {\left( {xy} \right)^n}$
Câu 3: Cho tú diện $ABCD$ có thể tích $V$ nội tiếp mặt cầu bán kính $R$.
Chứng minh rằng: $V \le \frac{{8\sqrt 3 }}{{27}}.{R^3}$
Câu 4: Cho n là số nguyên dương, x là số thực. Chứng minh rằng:
$\left| {\cos x} \right| + \left| {\cos 2x} \right| + ... + \left| {\cos {2^n}x} \right| \ge \frac{n}{2}$
Câu 5: Cho ${x_1},{x_2},...,{x_n},...$ là tất cả các nghiệm dương của phương trình $\tan x = x$ được sắp xếp theo thứ tự tăng dần. Tính $\mathop {\lim }\limits_{n \to + \infty } \left( {{x_n} - {x_{n - 1}}} \right)$.
Câu 6: Chứng minh rằng không tồn tại đa thức $f\left( x \right)$ bậc 4 với hệ số hữu tỉ sao cho: $\mathop {\min }\limits_{x \in R} f\left( x \right) = \sqrt 2 $

Bài viết đã được chỉnh sửa nội dung bởi Trần Đức Anh @@: 12-04-2012 - 18:07


#2 namcpnh

namcpnh

    Red Devil

  • Hiệp sỹ
  • 1153 Bài viết
  • Giới tính:Nam
  • Đến từ:Ho Chi Minh University of Science
  • Sở thích:Abstract and Applied Analysis

Đã gửi 18-07-2012 - 13:43

Câu 1: Tìm số nghiệm của hệ phương trình:
$\left\{ {\begin{array}{*{20}{c}}
{{x^2} = {y^2}}\\
{x + {y^2} + 12\sqrt[8]{{{x^2}y}} = 2010}
\end{array}} \right.$

Câu này PT 1 thấy là lạ.
Nếu đề không sai thi PT 2 thành:
$x^{2}+x+12x=2010$
<=>$x^{2}+13x-2010=0$
Đến đây tìm được 2 nghiệm.

Cùng chung sức làm chuyên đề hay cho diễn đàn tại :

Dãy số-giới hạn, Đa thức , Hình học , Phương trình hàm , PT-HPT-BPT , Số học.

Wolframalpha đây





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh