Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


Hình ảnh

Đề thi tuyển sinh thpt chuyên Lê Hồng Phong Nam Định 2012-2013 (đề chuyên)


  • Please log in to reply
Chủ đề này có 12 trả lời

#1 thoconlk

thoconlk

    Binh nhất

  • Thành viên
  • 20 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:everywhere

Đã gửi 13-06-2012 - 20:15

Bài 1: (2 điểm)
1) Cho x,y là các số không âm. Chứng minh:
$\sqrt{x+\sqrt[3]{x^{2}y}}+\sqrt{y+\sqrt[3]{y^{2}x}}=(\sqrt{\sqrt[3]{x}+\sqrt[3]{y}})^{3}$.
2) Cho a,b,c là các số phân biệt thoả mãn: $\left\{\begin{matrix} a+\frac{2}{b}=b+\frac{2}{c} =c+\frac{2}{a}& \\ abc\neq 0& \end{matrix}\right.$
Chứng minh $\left | abc \right |=2\sqrt{2}$.
Bài 2: (2,5 điểm)
1) GIải phương trình: $x^{4}-5x^{3}+8x^{2}-5x+1=0$.
2) Giải hệ phương trình: $\left\{\begin{matrix} xy-3x-2y=3 & \\ x^{2}+y^{2}-x-3y=38& \end{matrix}\right.$
Bài 3: (3 điểm) Cho tamgiác nhọn ABC nội tiếp đường tròn (O;R). Các tiếp tuyến của đường tròn tại B,C cắt nhau ở T. Đường thẳng AT cắt đường tròn tại điểm thứ hai là D.
1) Chứng minh AB.CD=AC.BD
2) Gọi M là trung điểm của BC, chứng minh $\angle BAD=\angle CAM$.
Bài 4: (1,5 điểm)
1) Tìm tất cả các cặp số tự nhiên (x;y) thoả mãn: (xy+7)2=$x^{2}+y^{2}$
2) Tìm n nguyên dương thoả mãn: $\frac{4.1}{4.1^{4}+1}+\frac{4.2}{4.2^{4}+1}+...+\frac{4n}{4n^{4}+1}=\frac{220}{221}$
Bài 5: (1 điểm) Có 2010 người xếp thành một vòng tròn, lúc đầu mỗi người cầm 1 chiếc kẹo. Mỗi bước chọn hai người có kẹo và thực hiện: Mỗi người chuyển 1 chiếc kẹo cho người bên cạnh (về bên trái hoặc phải). Sau hữu hạn bước có thể xảy ra trường hợp tất cả số kẹo chuyển về một người hay không?

#2 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2938 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 13-06-2012 - 20:31

File PDF

File gửi kèm


Bài viết đã được chỉnh sửa nội dung bởi Ispectorgadget: 13-06-2012 - 20:34

►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫


#3 hamdvk

hamdvk

    Trung sĩ

  • Thành viên
  • 153 Bài viết
  • Giới tính:Nữ
  • Đến từ:High School for Gifted Student HNUE
  • Sở thích:toán~...~

Đã gửi 13-06-2012 - 20:54

Bài 1
Đặt $\sqrt[3]{x}=a;\sqrt[3]{y}=b$
ta cần cm $\sqrt{a^{3}+{a^{2}b}}+\sqrt{b^{3}+{b^{2}a}}=(\sqrt{a+b})^{3}$
cái này dẽ cm được
Bài 2
1) Thấy x=0 không phải là nghiệm của phương trình chia cả hai cế của phương trình cho $x^{2}$ ta có
$x^{2}-5x+8-\frac{5}{x}+\frac{1}{x^{2}}=0$ (*)
dặt $x+\frac{1}{x}=y$ phương trình (*) trở thành
$y^{2}-5y+6=0$
$\Leftrightarrow (y-2)(y-3)=0$
Nếu y=2 thì $x^{2}-2x+1=0\Leftrightarrow x=1$
Nếu y=3 thì $x^{2}-3x+1=0$
phương trình có tập nghiệm là $\left \{ \frac{3-\sqrt{5}}{2};1;\frac{3+\sqrt{5}}{2}\right \}$
2)
Đặt xy=P; x+y=S
hệ trở thành $\left\{\begin{matrix} P-3S+y=3\\ S^{2}-2P-S-2y=38 \end{matrix}\right.$
$\Rightarrow S^{2}-2P-S-2y+2P+6S+2y=38+6$
$\Leftrightarrow S^{2}-7S-44=0$
$\Leftrightarrow (S-11)(S+4)=0$
Nếu x+y =11thay x=11-y ta có nghiệm (x;y)=(5;6)
Néu x+y =-4 CMTT (x;y)=$\left ( \frac{-5-3\sqrt{5}}{2} ;\frac{-3+3\sqrt{5}}{2}\right );\left ( \frac{-5+3\sqrt{5}}{2} ;\frac{-3-3\sqrt{5}}{2}\right )$
---
mình sửa rồi đó !!!

Bài viết đã được chỉnh sửa nội dung bởi hamdvk: 15-06-2012 - 08:13

~.......................................................~


$\Phi \frac{\because Nguyen Thai Ha\therefore }{14/07/97}\Phi$

~.............................................................................................~


#4 L Lawliet

L Lawliet

    Tiểu Linh

  • Thành viên
  • 1624 Bài viết
  • Giới tính:Nữ

Đã gửi 13-06-2012 - 20:56

Bài 1: (2 điểm)
1) Cho x,y là các số không âm. Chứng minh:
$\sqrt{x+\sqrt[3]{x^{2}y}}+\sqrt{y+\sqrt[3]{y^{2}x}}=(\sqrt{\sqrt[3]{x}+\sqrt[3]{y}})^{3}$.

Chém thử bài này:
Biến đổi $VT$:
$$VT=\sqrt{x+\sqrt[3]{x^2y}}+\sqrt{y+\sqrt[3]{y^2x}}$$
$$=\sqrt{\sqrt[3]{x}(\sqrt[3]{x}+\sqrt[3]{y})}+\sqrt{\sqrt[3]{y}(\sqrt[3]{x}+\sqrt[3]{y})}$$
$$=\sqrt{\sqrt[3]{x}+\sqrt[3]{y}}(\sqrt{\sqrt[3]{x}}+\sqrt{\sqrt[3]{y}})$$
$$=\sqrt{\sqrt[3]{x}+\sqrt[3]{y}}(\sqrt[6]{x^2}+\sqrt[6]{y^2})$$
(Áp dụng tính chất: $\sqrt[n]{\sqrt[m]{a}}=\sqrt[m.n]{a}$)
$=\sqrt{\sqrt[3]{x}+\sqrt[3]{y}}(\sqrt[3]{x}+\sqrt[3]{y}=VP)$
___
Post chậm :(

Bài viết đã được chỉnh sửa nội dung bởi L Lawliet: 26-06-2012 - 16:26

Thích ngủ.


#5 T M

T M

    Trung úy

  • Thành viên
  • 926 Bài viết
  • Giới tính:Nam
  • Đến từ:$\infty$

Đã gửi 13-06-2012 - 21:02

2) Giải hệ phương trình: $\left\{\begin{matrix} xy-3x-2y=3 & \\ x^{2}+y^{2}-x-3y=38& \end{matrix}\right.$


Một lời giải khác

Đặt $ \left\{\begin{matrix}
x=u+5 & & \\y=v+6
& &
\end{matrix}\right. $

Phương trình trở thành

$\left\{\begin{matrix}
3(u+v)+uv=0 & & \\(u+v)^2+9(u+v)-2uv=0
& &
\end{matrix}\right.$

Đặt $ \left\{\begin{matrix}
u+v=S & & \\uv=P
& &
\end{matrix}\right.(S^2-4P\geq0)$

Hệ trở thành $\left\{\begin{matrix}
3S+P=0 & & \\ S^2+9S-2P=0
& &
\end{matrix}\right.$


Hệ này đơn giản rồi !!!


Bài viết đã được chỉnh sửa nội dung bởi luxubuhl: 14-06-2012 - 20:35

ĐCG !

#6 davildark

davildark

    Thượng sĩ

  • Thành viên
  • 223 Bài viết
  • Giới tính:Nam
  • Đến từ:Thực Hành SP

Đã gửi 13-06-2012 - 21:03

2) Cho a,b,c là các số phân biệt thoả mãn: $\left\{\begin{matrix} a+\frac{2}{b}=b+\frac{2}{c} =c+\frac{2}{a}& \\ abc\neq 0& \end{matrix}\right.$
Chứng minh $\left | abc \right |=2\sqrt{2}$.

Đề thi PTNK HCM đây mà
$$(a-b)(b-c)(c-a)=(\frac{2}{c}-\frac{2}{b}).(\frac{2}{a}-\frac{2}{c}).(\frac{2}{b}-\frac{2}{a})=\frac{2.(b-c).2.(c-a).2(a-b)}{a^2.b^2.c^2}=\frac{8(a-b)(b-c)(c-a)}{a^2.b^2.c^2}$$
$$\Rightarrow {a^2.b^2.c^2}=8 \Rightarrow \left | abc \right |=2\sqrt{2}$$

Bài viết đã được chỉnh sửa nội dung bởi davildark: 13-06-2012 - 21:03


#7 davildark

davildark

    Thượng sĩ

  • Thành viên
  • 223 Bài viết
  • Giới tính:Nam
  • Đến từ:Thực Hành SP

Đã gửi 13-06-2012 - 21:13

Bài 5: (1 điểm) Có 2010 người xếp thành một vòng tròn, lúc đầu mỗi người cầm 1 chiếc kẹo. Mỗi bước chọn hai người có kẹo và thực hiện: Mỗi người chuyển 1 chiếc kẹo cho người bên cạnh (về bên trái hoặc phải). Sau hữu hạn bước có thể xảy ra trường hợp tất cả số kẹo chuyển về một người hay không?

Ta gọi 2010 người đó là các điểm . Tô màu các điểm xen kẽ nhau bằng 2 màu đen trắng
Nếu ta chọn 2 điểm cùng màu đen ( 2 điểm màu trắng làm tương tự ) để thực hiện thì số điểm màu trắng tăng lên 2 số điểm.đen giảm 2
Nếu chọn 2 điểm khác màu thì số điểm đen trắng không đổi
Ta thấy sau mỗi lần thực hiện thì số điểm tăng giảm là đều là số chẵn
Nếu như có số lần thõa mản đề bài thì số điểm trên các ô đều là số chẵn
Mà theo nhận xét kết hợp với việc mỗi người chỉ cầm 1 viên kẹo thì ta thấy số kẹo không thể là số chẵn
Vậy không thể thực hiện được trường hợp tất cả số kẹo chuyển về một người

#8 hamdvk

hamdvk

    Trung sĩ

  • Thành viên
  • 153 Bài viết
  • Giới tính:Nữ
  • Đến từ:High School for Gifted Student HNUE
  • Sở thích:toán~...~

Đã gửi 13-06-2012 - 21:14

Bài 4
1) Dặt x+y =S; xy =P phương trình trở thành
$(P+7)^{2}=S^{2}-2P \Leftrightarrow (P+8)^{2}=S^{2}+15$
$\Leftrightarrow (P+S+8)(P-S+8)=15$
vì x, y tự nhiên nên S,P tự nhiên có P+S+8 >7
$\Rightarrow P+8-S> 0\Rightarrow P+S+8> P+8-S> 0$
$\Rightarrow \left\{\begin{matrix} P+S+8=15\\ P-S+8=1 \end{matrix}\right.$
$\Rightarrow \left\{\begin{matrix} P+S=7\\ S-P=7 \end{matrix}\right.$
$\Rightarrow \left\{\begin{matrix} P=0\\ S=7 \end{matrix}\right.$
$\Rightarrow \left\{\begin{matrix} xy=0\\ x+y=7 \end{matrix}\right.$
vậy phương trình có hai nghiệm (x;y)=(0;7);(7;0)
2)
Sử dụng
$\frac{4n}{4n^{4}+1}=\frac{(2n^{2}+2n+1)-(2n^{2}-2n+1)}{(2n^{2}+2n+1)(2n^{2}-2n+1)}$
$=\frac{1}{(2n^{2}-2n+1)}-\frac{1}{(2n^{2}+2n+1)}$
$=\frac{1}{2(n-1)n+1}-\frac{1}{2n(n+1)+1}$
khử liên tiếp suy ra n=10
--
bài này thi khtn rồi thì phải

Bài viết đã được chỉnh sửa nội dung bởi hamdvk: 13-06-2012 - 21:23

~.......................................................~


$\Phi \frac{\because Nguyen Thai Ha\therefore }{14/07/97}\Phi$

~.............................................................................................~


#9 thoconlk

thoconlk

    Binh nhất

  • Thành viên
  • 20 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:everywhere

Đã gửi 14-06-2012 - 09:00

Bài 1
Đặt $\sqrt[3]{x}=a;\sqrt[3]{y}=b$
ta cần cm $\sqrt{a^{3}+{a^{2}b}}+\sqrt{b^{3}+{b^{2}a}}=(\sqrt{a+b})^{3}$
cái này dẽ cm được
Bài 2
1) Thấy x=0 không phải là nghiệm của phương trình chia cả hai cế của phương trình cho $x^{2}$ ta có
$x^{2}-5x+8-\frac{5}{x}+\frac{1}{x^{2}}=0$ (*)
dặt $x+\frac{1}{x}=y$ phương trình (*) trở thành
$y^{2}-5y+6=0$
$\Leftrightarrow (y-2)(y-3)=0$
Nếu y=2 thì $x^{2}-2x+1=0\Leftrightarrow x=1$
Nếu y=3 thì $x^{2}-3x+1=0$
phương trình có tập nghiệm là $\left \{ \frac{3-\sqrt{5}}{2};1;\frac{3+\sqrt{5}}{2}\right \}$
2)
Đặt xy=P; x+y=S
hệ trở thành $\left\{\begin{matrix} P-3S+y=3\\ S^{2}-2P-S-2y=38 \end{matrix}\right.$
$\Rightarrow S^{2}-2P-S-2y+2P+6S+2y=38+6$
$\Leftrightarrow S^{2}-7S-44=0$
$\Leftrightarrow (S-11)(S+4)=0$
Nếu x+y =11thay x=11-y ta có nghiệm (x;y)=(5;6)
Néu x+y =-4 CMTT (x;y)=$\left ( \frac{-5-4\sqrt{5}}{2} ;\frac{-3+4\sqrt{5}}{2}\right );\left ( \frac{-5+4\sqrt{5}}{2} ;\frac{-3-4\sqrt{5}}{2}\right )$

bạn ơi nghiệm ở phần x+y=-4 sai rồi

Bài viết đã được chỉnh sửa nội dung bởi thoconlk: 14-06-2012 - 19:55


#10 rasefan123

rasefan123

    Lính mới

  • Thành viên
  • 3 Bài viết

Đã gửi 14-06-2012 - 18:20

Nếu như có số lần thõa mản đề bài thì số điểm trên các ô đều là số chẵn
--> Bạn giải thích câu này rõ hơn được không?

#11 rasefan123

rasefan123

    Lính mới

  • Thành viên
  • 3 Bài viết

Đã gửi 14-06-2012 - 20:07

Bài 5: (1 điểm) Có 2010 người xếp thành một vòng tròn, lúc đầu mỗi người cầm 1 chiếc kẹo. Mỗi bước chọn hai người có kẹo và thực hiện: Mỗi người chuyển 1 chiếc kẹo cho người bên cạnh (về bên trái hoặc phải). Sau hữu hạn bước có thể xảy ra trường hợp tất cả số kẹo chuyển về một người hay không?

Mình xin đưa ra một cách giải đơn giản:
1, Đánh số cho 2010 vị trí từ 1 đến 2010
2, Gọi C là tổng số kẹo ở vị trí chẵn, L là tổng số kẹo ở vị trí lẻ. Theo bài ra thì C=L=1005 -> ban đầu là 1 số lẻ. Tất cả số kẹo chuyển về 1 chỗ -> C=2010 hoặc L=2010
3, Khi ta chuyển kẹo ở 1 vị trí chẵn sẽ làm cho số kẹo ở 1 vị trí lẻ tăng lên 1 và ngược lại. Xét các trường hợp chuyển kẹo ở các vị trí sau:
- TH1: Vị trí lẻ+lẻ sẽ làm tăng tổng số kẹo ở các vị trí chẵn lên 2 -> C tăng 2, L giảm 2
- TH2: Vị trí chẵn+chẵn sẽ làm tăng tổng số kẹo ở các vị trí lẻ lên 2 -> L tăng 2, C giảm 2
- TH3: Vị trí chẵn+lẽ sẽ làm: L tăng 1 và giảm 1 -> L không đổi, C không đổi.
Qua 3 trường hợp trên ta thấy C và L luôn luôn là 1 số lẻ sau 1 số lần hữu hạn chuyển kẹo -> luôn luôn tồn tại 2 vị trí mà ở đó có ít nhất 1 kẹo. Vậy không thể chuyển tất cả kẹo về một người được.
p/s: Cách này chỉ giải được đối với những bài mà số kẹo chia hết cho 2 mà k chia hết cho 4, hy vọng sẽ có "cao thủ" đưa ra cách giải tổng quát hơn và đẹp hơn <_<

#12 dohuuthieu

dohuuthieu

    Hạ sĩ

  • Thành viên
  • 82 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Minh Hưng

Đã gửi 15-06-2012 - 22:14

Bài 3:
1) Dễ chứng minh vì ABDC là tứ giác điều hòa
2)Gọi E là giao điểm của AM với (O) ,vẽ AK song song với BC thì A và K đối xứng với nhau qua OT
Dễ chứng minh K,E,T thẳng hàng
Suy ra $\widehat{CAM}=\widehat{CKE}$ mà $\widehat{CKE}=\widehat{BAD}$(tc đối xứng)
Suy ra $\angle BAD=\angle CAM$.

Bài viết đã được chỉnh sửa nội dung bởi dohuuthieu: 15-06-2012 - 22:16


#13 0132345

0132345

    Binh nhất

  • Thành viên
  • 20 Bài viết
  • Giới tính:Nam

Đã gửi 31-07-2013 - 20:05

Bài 3: (3 điểm) Cho tamgiác nhọn ABC nội tiếp đường tròn (O;R). Các tiếp tuyến của đường tròn tại B,C cắt nhau ở T. Đường thẳng AT cắt đường tròn tại điểm thứ hai là D.
1) Chứng minh AB.CD=AC.BD
2) Gọi M là trung điểm của BC, chứng minh $\angle BAD=\angle CAM$.
 câu 1:  1.▲BDT ĐỒNG DẠNG VS ▲ABT(gg)=> BD/AB=BT/AT=>AB/BD=AT/CT(1)

              ▲ACT ĐỒNG DẠNG ▲CDT (gg) => AC/CD=AT/CT(2)

Từ (1) và (2)=> AB/BD=AC/CD0=>ĐPCM

 

 






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh