Đến nội dung

Hình ảnh

1.4 - Sự tương giao của các đồ thị

* * * * * 2 Bình chọn chuyên đề ôn thi đh

  • Please log in to reply
Chủ đề này có 23 trả lời

#21
maudon

maudon

    Lính mới

  • Thành viên
  • 5 Bài viết

em không hiểu chỗ $1+m+1\neq 0$ Ở câu 1 lấy ở đâu ra ạ và cả ở câu 2 chỗ 

9+8k>0 nữa ạ e k hiểu lấy ở đâu ra nữa


Bài viết đã được chỉnh sửa nội dung bởi maudon: 05-09-2014 - 15:29

tháithu

 


#22
thanhthanhtoan

thanhthanhtoan

    Trung sĩ

  • Thành viên
  • 165 Bài viết

Ví dụ 1.4. Cho hàm số $y = x^3 – 3mx^2 + 3(2m – 1)x$ có đồ thị là $\left ( C \right )$. Tìm $m$ để $\left ( C \right )$ cắt trục hoành tại ba điểm có hoành độ lập thành một cấp số cộng.

Phân tích:
Dễ thấy phương trình hoành độ giao điểm chắc chắn có nghiệm là $x=0$. Do đó có 2 trường hợp thỏa mãn điều kiện bài toán:
TH1: Ba hoành độ giao điểm lần lượt là $-a;0;a,(a>0)$. Trong trường hợp này hai nghiệm khác $0$ của phương trình đối nhau. Tức là tổng của chúng bằng $0$
TH2: Ba hoành độ giao điểm lần lượt là $0;a;2a,(a>0)$ hoặc $-2a,-a,0, (a>0)$. Trong trường hợp này hai nghiệm khác $0$ của phương trình có 1 nghiệm gấp đôi nghiệm kia.

Giải
Hoành độ giao điểm của $\left ( C \right )$ và trục $Ox$ là nghiệm của phương trình:
$$x^3 – 3mx^2 + 3(2m – 1)x = 0$$
$$\Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 3mx + 3(2m - 1) = 0 \ \ \ \ (1.4) \end{array} \right.$$.
Yêu cầu của bài toán được thỏa mãn khi và chỉ khi xảy ra 1 trong 2 trường hợp sau:
TH1 : phương trình $(1.4)$ có hai nghiệm khác 0 và hai nghiệm đó đối nhau. Điều này tương đương với:
$$\left\{ \begin{array}{l}3m = 0\\2m - 1 \neq 0\end{array} \right. \Leftrightarrow m = 0$$
TH2: phương trình $(1.4)$ có hai nghiệm phân biệt $x_1, x_­2$ khác 0 và $x_1 = 2x_2.$ Điều này tương đương với:
$$\left\{ \begin{array}{l}9{m^2} - 12(2m - 1) > 0\\2m - 1 \neq 0\\{x_1} + {x_2} = 3{x_2}\end{array} \right.$$
$$\Leftrightarrow \left\{ \begin{array}{l}9{m^2} - 12(2m - 1) > 0\\2m - 1 \neq 0\\3m = 3{x_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9{m^2} - 12(2m - 1) > 0\\2m - 1 \ne 0\\ - 2{m^2} + 6m - 3 = 0\end{array} \right. \Leftrightarrow m = \frac{{3 \pm \sqrt 3 }}{2}$$.
KL: $m = 0$ hoặc $m = \frac{{3 \pm \sqrt 3 }}{2}$.

 

 

Cho em hỏi chỗ $3m = 3{x_2}$ làm như thế nào mà $\Leftrightarrow - 2{m^2} + 6m - 3 = 0$ ?



#23
phan huong

phan huong

    Thượng sĩ

  • Thành viên
  • 234 Bài viết

Cho em hỏi chỗ $3m = 3{x_2}$ làm như thế nào mà $\Leftrightarrow - 2{m^2} + 6m - 3 = 0$ ?

cái này bạn chỉ việc thay x2 =m vào pt (1.4) thôi (do x2 là nghiệm của (1.4) ) .từ đó ta được $\Leftrightarrow - 2{m^2} + 6m - 3 = 0$


Bài viết đã được chỉnh sửa nội dung bởi phan huong: 24-09-2014 - 21:07


#24
chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2498 Bài viết

 

cho hàm số $y=\frac{1}{3}x^{3}-x^{2}-3x+\frac{8}{3}$
Lập phương trình đường thẳng d song song với trục hoành và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho
tam giác OAB cân tại O (O là gốc toạ độ).

 

 

cho e hỏi sao không có kiến thức dạy cách giải là tìm A,B để tạo nên tam giác đều hay cân ạ

Giả sử đường thẳng $y=c$ cắt $(C)$ tại $A$ và $B$ sao cho tam giác $OAB$ cân tại $O$

$\Rightarrow$ phương trình $x^3-3x^2-9x+8-3c=0$ có $2$ nghiệm đối nhau và khác nhau.

Giả sử $2$ nghiệm đối nhau đó là $\pm\ a$ ($a> 0$), còn nghiệm thứ ba là $b$ (có thể trùng hoặc khác $2$ nghiệm kia)

Phương trình đó có thể viết dưới dạng $(x^2-a^2)(x-b)=0$ hay $x^3-bx^2-a^2x+a^2b=0$

$\left\{\begin{matrix}a^2=9\\b=3\\c=-\frac{19}{3} \end{matrix}\right.$

Vậy phương trình đường thẳng cần tìm là $y=-\frac{19}{3}$.

 

 


  • 1am yêu thích

...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: chuyên đề, ôn thi đh

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh