Đến nội dung


Hình ảnh

Chia các đa thức thành các tập có tổng bằng nhau


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 chuyentoan

chuyentoan

    None

  • Hiệp sỹ
  • 1650 Bài viết
  • Giới tính:Nam
  • Đến từ:Darmstadt - Germany
  • Sở thích:Guitar, Bóng đá

Đã gửi 24-01-2013 - 04:05

$a$ là một số nguyên lớn hơn $1$, và $f$ là một đa thức có bậc dương và có mọi hệ số là các số nguyên không âm. Với $n\geq 1$, đặt $S\left(n\right) = \left\{ f\left( 1\right),\dots, f\left ( n\right)\right\}$.
Chứng minh rằng tồn tại vô số số nguyên dương $n$ sao cho $S\left(n\right)$ có thể được chia thành $a$ tập hợp con sao cho tổng các phần tử trong mỗi tập hợp là bằng nhau.
The only way to learn mathematics is to do mathematics

#2 PSW

PSW

    Những bài toán trong tuần

  • Thành viên
  • 488 Bài viết
  • Giới tính:Nam

Đã gửi 05-10-2014 - 17:14

Bài toán này thuộc Gameshow NHỮNG BÀI TOÁN TRONG TUẦN. Bài toán đã được công bố lại nhiều ngày nhưng chưa ai giải được. BTC đã đặt hoa hồng hi vọng    @};- cho bài toán này.

Nếu hết ngày 7/10 mà vẫn không có ai giải được, BTC sẽ công bố bài toán khác, tuy nhiên hoa hồng hi vọng    @};- sẽ vẫn tồn tại cho đến khi có người giải được bài toán này.


1) Thể lệ
2) Danh sách các bài toán đã qua: 1-100, 101-200, 201-300, 301-400
Còn chờ gì nữa mà không tham gia!  :luoi:
 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh