Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


Hình ảnh

Tìm hệ số $x^3$ trong khai triển đa thức


  • Please log in to reply
Chủ đề này có 7 trả lời

#1 snowwhite

snowwhite

    Trung sĩ

  • Thành viên
  • 186 Bài viết
  • Giới tính:Nam
  • Đến từ:ĐH KHTN TPHCM
  • Sở thích:Nuôi cá vàng

Đã gửi 01-02-2013 - 19:29

Tìm hệ số của $x^3$ trong khai triển đa thức
$P=(x^2+x-1)^5$

#2 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 01-02-2013 - 20:17

Tìm hệ số của $x^3$ trong khai triển đa thức
$P=(x^2+x-1)^5$

Sử dụng khai triển trực tiếp sẽ cho ta $\left\langle {{x^3}} \right\rangle = \sum\limits_{0 \le j \le k;k + j = 3} {{5\choose k}{k\choose j}{{\left( { - 1} \right)}^{5 - k}}} $

Bài viết đã được chỉnh sửa nội dung bởi dark templar: 02-02-2013 - 16:13

"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#3 snowwhite

snowwhite

    Trung sĩ

  • Thành viên
  • 186 Bài viết
  • Giới tính:Nam
  • Đến từ:ĐH KHTN TPHCM
  • Sở thích:Nuôi cá vàng

Đã gửi 01-02-2013 - 20:25

tắt quá bạn ơi

#4 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 01-02-2013 - 20:45

tắt quá bạn ơi

Khai triển tổng đó thì bạn chỉ cần giải PT nghiệm nguyên không âm $k+j=3$ với điều kiện $j \le k$ :)
Còn tại sao lại ra tổng đó thì bạn khai triển Nhị Thức Newton như sau :
$$(x^2+x-1)^{5}=\sum_{k=0}^{5}\binom{5}{k}(-1)^{5-k}x^{k}(x+1)^{k}$$
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#5 snowwhite

snowwhite

    Trung sĩ

  • Thành viên
  • 186 Bài viết
  • Giới tính:Nam
  • Đến từ:ĐH KHTN TPHCM
  • Sở thích:Nuôi cá vàng

Đã gửi 01-02-2013 - 21:01

Khai triển tổng đó thì bạn chỉ cần giải PT nghiệm nguyên không âm $k+j=3$ với điều kiện $j \le k$ :)
Còn tại sao lại ra tổng đó thì bạn khai triển Nhị Thức Newton như sau :
$$(x^2+x-1)^{5}=\sum_{k=0}^{5}\binom{5}{k}(-1)^{5-k}x^{k}(x+1)^{k}$$

Không biết có đúng không, nếu không đúng thì chỉ giúp mình
Áp dụng ctnh Nui-tơn cho $x^2$ và $x-1$ ta có
$(x^2 +x-1)^5 = \sum C_5^k(x^2)^{5-k}(x-1)^k $
Sau đó áp dụng cho $(x-1)^k$
Và ta có $(x^2 +x-1)^5 = \sum C_5^k(x^2)^{5-k}(x-1)^k = \sum C_5^k(x^2)^{5-k}\sum C_k^mx^{k-m}(-1)^m$

#6 dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM
  • Sở thích:Đọc fanfiction và theo dõi DOTA chuyên nghiệp

Đã gửi 01-02-2013 - 21:11

Không biết có đúng không, nếu không đúng thì chỉ giúp mình
Áp dụng ctnh Nui-tơn cho $x^2$ và $x-1$ ta có
$(x^2 +x-1)^5 = \sum C_5^k(x^2)^{5-k}(x-1)^k $
Sau đó áp dụng cho $(x-1)^k$
Và ta có $(x^2 +x-1)^5 = \sum C_5^k(x^2)^{5-k}(x-1)^k = \sum C_5^k(x^2)^{5-k}\sum C_k^mx^{k-m}(-1)^m$

Bạn làm theo hướng này thì cũng ra thôi,nhưng sẽ hơi rối hơn 1 chút :P
"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.

#7 Nobodyv3

Nobodyv3

    Sĩ quan

  • Thành viên
  • 455 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Hốc bà Tó - phấn đấu làm ĐHV hậu học đại
  • Sở thích:Defective Version

Đã gửi 18-01-2023 - 17:42

Tìm hệ số của $x^3$ trong khai triển đa thức
$P=(x^2+x-1)^5$

Số hạng tổng quát trong khai triển của $P=(x^2+x-1)^5$ là $\frac {5!}{r!s!t!}(x^2)^r(x)^s(-1)^t=\frac {5!}{r!s!t!}1^r1^s(-1)^tx^{s+2r}$ trong đó $0\leq r,s,t\leq 5$   (1) và $r+s+t=5$  (2). Để tính hệ số của $x^3$ ta phải có $s+2r=3$, kết hợp với điều kiện (1)&(2) suy ra $t=2,\,s=3,\,r=0 $ hoặc $t=3,\,s=1,\,r=1$.
$\Rightarrow [x^3](x^2+x-1)^5=\frac {5!}{0!3!2!}\cdot 1^01^3(-1)^2+ \frac {5!}{1!1!3!}\cdot 1^11^1(-1)^3=10-20=\boldsymbol {-10}$
HOPE

Rũ áo phong sương trên gác trọ,
lặng nhìn thiên hạ đón Xuân sang...

#8 supermember

supermember

    Đại úy

  • Hiệp sỹ
  • 1620 Bài viết
  • Giới tính:Nam
  • Đến từ:Quận 7, TP HCM
  • Sở thích:bên em

Đã gửi 19-01-2023 - 23:17

Tìm hệ số của $x^3$ trong khai triển đa thức
$P=(x^2+x-1)^5$

 

Bài này cách đơn giản nhất là như sau:

 

Đặt $y = f(x) =x-1$

 

Rõ ràng theo khai triển nhị thức Newton, ta có:

 

$ P(x) = (x^2 + y)^5 = \binom{5}{0}x^{10}+ \binom{5}{1}x^{8}y + \binom{5}{2}x^{6}y^2+ \binom{5}{3}x^{4}y^3+ \binom{5}{4}x^{2}y^4+ \binom{5}{5}y^5  = G(x) + \binom{5}{4}x^{2}y^4+ \binom{5}{5}y^5 $

 

Rõ ràng trong khai triển của đa thức $G(x)$ thì hệ số của $x^0 ; x^1 ; x^2 ; x^3$ đều bằng $0$, nên hệ số của $x^3$ trong khai triển $P(x)$ cũng chính là hệ số $x^3$ trong khai triển $ \binom{5}{4}x^{2}y^4+ \binom{5}{5}y^5 $

 

$ = \binom{5}{4}x^{2} (x-1)^4+ \binom{5}{5} (x-1)^5 $

 

Bằng $ \binom{5}{4} \binom{4}{3} (-1)^3 + \binom{5}{2} (-1)^2  = 5 \cdot 4 \cdot (-1) + \frac{4 \cdot 5}{2} = -20+10 = -10$


Bài viết đã được chỉnh sửa nội dung bởi supermember: 19-01-2023 - 23:30

Khi bạn là người yêu Toán, hãy chấp nhận rằng bạn sẽ buồn nhiều hơn vui :)




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh