Đến nội dung

Hình ảnh

$\left\{\begin{matrix} x_{1}=1\\ x_{n}=n.x_{n-1}+1 \end{matrix}\right.$

- - - - -

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
VNSTaipro

VNSTaipro

    Sĩ quan

  • Thành viên
  • 322 Bài viết
Cho dãy $\{x_{n} \}_{n \ge 1}$ được xác định bởi $\left\{\begin{matrix} x_{1}=1\\ x_{n}=n.x_{n-1}+1 \end{matrix}\right.$
Hãy tìm số n lớn nhất mà <1000 sao cho $x_{n}$ tận cùng là 2 chữ số 0.

Bài viết đã được chỉnh sửa nội dung bởi dark templar: 22-03-2013 - 17:42

Hình đã gửi


#2
phuc_90

phuc_90

    Sĩ quan

  • Thành viên
  • 438 Bài viết

Cho dãy $\{x_{n} \}_{n \ge 1}$ được xác định bởi $\left\{\begin{matrix} x_{1}=1\\ x_{n}=n.x_{n-1}+1 \end{matrix}\right.$
Hãy tìm số n lớn nhất mà <1000 sao cho $x_{n}$ tận cùng là 2 chữ số 0.

 

Theo giả thiết ta có

                               $x_n=nx_{n-1}+1$

                                     $=n\left ( (n-1)x_{n-2}+1 \right )+1$

                                     $=n(n-1)x_{n-2}+n+1$

                                      ...............

                                     $=n(n-1)...2\,+\,n(n-1)...3\,\,+\,\,n(n-1)...4\,\,+\,\,...\,\,+\,\,n(n-1)\,\,+\,\,n+1$

 

Với $n=4k+3, k\in \mathbb{N^*}$ ta có $\left\{\begin{matrix}1+n=4k+4\equiv 0 \,\,\,(mod \,\, 4)\\ n(n-1)=4(4k^2+5k+1)+2\equiv 2 \,\,\,(mod \,\,4)\\ n(n-1)(n-2)\equiv 2(n-2)=2(4k+1)\equiv 2 \,\,\,(mod \,\,4)\end{matrix}\right.$

 

suy ra  $1+n+n(n-1)+n(n-1)(n-2)\equiv 0 \,\,\,(mod \,\,4)$

 

Mặt khác, $\forall n\geq 4$ ta có $4\,\,|\,\, n(n-1)(n-2)(n-3)$

 

Từ những điều trên ta suy ra được $u_n\equiv 0 \,\,\,(mod \,\, 4)$ khi $n=4k+3, \,\,k\in \mathbb{N^*}$    (1)

 

Bây giờ ta sẽ tìm $n$ sao cho $u_n\equiv 0\,\,\, (mod \,\, 25)$ bằng phương pháp liệt kê (ai có cách nào gọn hơn thì post lên để hoàn thiện cho bài này nhé)

 

-   Với $n=5k \,\,,\,\, k\geq 2$ thì $n(n-1)(n-2)(n-3)(n-4)(n-5)\equiv 0\,\,\,(mod\,\, 25)$

 

Khi đó để $u_n\equiv 0\,\,\, (mod \,\, 25)$ thì ta sẽ tìm $n$ với điều kiện như trên sao cho

$$A=1+n+n(n-1)+n(n-1)(n-2)+n(n-1)...(n-3)+n(n-1)...(n-4)\equiv 0\,\,\, (mod\,\, 25)$$

 

Nhưng điều này không xảy ra vì  $\left\{\begin{matrix}1+n\equiv 5k+1\,\,(mod\,\,25)\\ n(n-1)\equiv -5k\,\,(mod\,\,25)\\ n(n-1)(n-2)\equiv -5k(n-2)\equiv 10k\,\,(mod\,\,25)\\ n(n-1)...(n-3)\equiv 10k(n-3)\equiv -5k\,\,(mod\,\,25)\\ n(n-1)...(n-4)\equiv -5k(n-4)\equiv -5k\,\,(mod\,\,25)\end{matrix}\right.$  suy ra $A\equiv 1 \,\,\, (mod \,\, 25)$

 

Bằng lập luận tương tự như vậy với $n=5k+1\,\,,\,\, n=5k+2\,\,,\,\, n=5k+3\,\,,\,\, n=5k+4$

 

thì ta tìm được $n=25l+7\,\,,\,\, l\geq 1$  thỏa $u_n\equiv 0\,\,\, (mod \,\, 25)$    (2)

 

Từ (1) và (2) ta suy ra được $n=100s+7\,\,\,,\,\, s\geq 1$ thì $u_n\equiv 0 \,\,\,(mod\,\, 100)$

 

Vậy $n=907$ thỏa mãn đề bài


Bài viết đã được chỉnh sửa nội dung bởi phuc_90: 21-09-2021 - 12:46





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh