Đến nội dung


Hình ảnh
* * * * * 2 Bình chọn

Viết $(C)$ có tâm thuộc $d: 2x+y-4=0$ cắt $d': x-y-1=0$ tại $A,B$ với $AB=2\sqrt{7}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Issac Newton

Issac Newton

    Hạ sĩ

  • Thành viên
  • 72 Bài viết

Đã gửi 23-03-2013 - 14:54

Viết $(C)$ có tâm thuộc $d: 2x+y-4=0$ cắt $d': x-y-1=0$ tại $A,B$ với $AB=2\sqrt{7}$

#2 LuminousVN

LuminousVN

    Hạ sĩ

  • Thành viên
  • 63 Bài viết
  • Giới tính:Nam
  • Đến từ:huyện Dầu Tiếng, tỉnh Bình Dương

Đã gửi 01-06-2013 - 07:52

Gọi $I$ là tâm của đường tròn $( C)$. Theo đề bài $I\in d\Rightarrow I(t;4-2t)$ $(t\in\mathbb{R})$

Ta có: $d(I,d')=\frac{\left | t-(4-2t)-1 \right |}{\sqrt{2}}=\frac{\left | 3t-5\right |}{\sqrt{2}}$

$R=\sqrt{d^{2}(I,d')+\frac{AB^{2}}{4}}=\sqrt{\frac{(3t-5)^{2}}{2}+7}=\sqrt{\frac{9t^{2}-30t+39}{2}}$

Từ định lí đường kính và dây ta có: $2R\geq AB\Leftrightarrow R\geq \frac{AB}{2}=\sqrt{7}$

$\Leftrightarrow \frac{9t^{2}-30t+39}{2}\geq 7\Leftrightarrow 9t^{2}-30t+25\geq 0\Leftrightarrow (3t-5)^{2}\geq 0$, luôn đúng $\forall t\in\mathbb{R}$

Vì vậy, ta có vô số đường tròn  $( C)$ thỏa mãn đề bài.


Đây là FB của mình. Mong được làm quen với các bạn https://www.facebook...antri.nguyen.71 :D





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh