Đến nội dung


Hình ảnh

Chứng minh rằng $\forall \,\, n, \, a_n$ nhân được bằng cách viết $n$ dưới dạng cơ số $p-1$ nhưng lại đọc trong cơ số $p$


  • Please log in to reply
Chưa có bài trả lời

#1 WhjteShadow

WhjteShadow

    Thượng úy

  • Phó Quản trị
  • 1319 Bài viết
  • Giới tính:Nam

Đã gửi 09-06-2013 - 23:34

Bài toán :

Ch0 $p$ là số nguyên tố lẻ và dãy $\{a_n\}_{(n\geq 0)}$ xác định bởi : $a_0=0,a_1=1,a_2=2,...,a_{p-2}=p-2$. $\forall n\geq p-1$, $a_n$ là số nguyên nhỏ nhất lớn hơn $a_{n-1}$ sao cho trong dãy $\{a_n\}$ không có dãy con $p$ phần tử nào tạo thành cấp số cộng.

Chứng minh rằng $\forall \,\, n, \, a_n$ nhân được bằng cách viết $n$ dưới dạng cơ số $p-1$ nhưng lại đọc trong cơ số $p$


$$n! \sim \sqrt{2\pi n} \left(\dfrac{n}{e}\right)^n$$

 

“We can only see a short distance ahead, but we can see plenty there that needs to be done.” - Alan Turing





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh