Đến nội dung

ninhxa

ninhxa

Đăng ký: 05-03-2012
Offline Đăng nhập: 01-12-2013 - 13:23
***--

Trong chủ đề: Cho a,b,c thoả mãn $0\leq a,b,c\leq 2$ và $a+b+c...

20-07-2013 - 16:10

Cho a,b,c thoả mãn $0\leq a,b,c\leq 2$ và $a+b+c=4$ .

Tìm MAX $a^{3}+b^{3}+c^{3}+4abc$

Biến đổi biểu thức về: $P=64-12(ab+bc+ca)+7abc$

Đặt c=max(a;b;c)

Xét A=$-12(ab+bc+ca)+7abc=ab(7c-12)+12c(c-4)$

Nếu $c\geq \frac{12}{7}$ thì:

$A\leq \frac{(a+b)^2}{4}.(7c-12)+12c(c-4)=\frac{1}{7}(c-2)(7c^2-6c+4)-46\leq -46\rightarrow dpcm$

Nếu $c\leq \frac{12}{7}$ thì

$a,b\leq \frac{12}{7}\Rightarrow (a-\frac{12}{7})(b-\frac{12}{7})\geq 0$

$\Rightarrow ab\geq \frac{12}{7}(b+c)-\frac{144}{49}$

$\Rightarrow A\leq \left [ \frac{12}{7}(4-c)-\frac{144}{49} \right ](7c-12)+12c(c-4)=-\frac{2304}{49}< -46$

$\rightarrow dpcm$


Trong chủ đề: Sử dụng khai triển $Abel$ để chứng minh bất đẳng thức

17-06-2013 - 23:46

Bài toán 4:Với $a\geq 3, a+b\geq 5, a+b+c\geq 6$, chứng minh rằng

$a^2+b^2+c^2\geq 14$

 

bạn namsub nói đúng rồi đó

bài này có thể làm như sau:

áp dụng bdt cauchy-schwaz ta dc:

$(a^2+b^2+c^2)(3^2+2^2+1^2)\geq (3a+2b+c)^2$

theo phép nhóm abel ta có:

$3a+2b+c=(3-2)a+(2-1)(a+b)+a+b+c\geq 3+5+6=14$

ta có dc dpcm


Trong chủ đề: Sử dụng khai triển $Abel$ để chứng minh bất đẳng thức

09-06-2013 - 00:34

Bài này có lẽ dễ nhất   :( 

$a^{2}+b^{2}+c^{2}=a.a+b.b+c.c=(a-b).a+(b-c).(a+b)+c.(a+b+c)\geq 3(a-b)+5(b-c)+6c=a+(a+b)+(a+b+c)\geq 3+5+6=14 \Rightarrow đpcm$

bạn ko thể có đánh giá đó dc. a-b và b-c chưa biết dấu mà


Trong chủ đề: $\frac{1}{a}+\frac{1}{b...

06-04-2013 - 22:59

Điều kiện tương đương với: $(a+b)^2=1+2ab$

Bất đẳng thức tương đương với:

$\frac{a+b}{ab}-\frac{1}{ab}\geq 2\left ( \sqrt{2}-1 \right )$

$\Leftrightarrow a+b\geq 2(\sqrt{2}-1)ab+1$

$\Leftrightarrow (a+b)^2\geq \left 4( \sqrt{2}-1 \right )\right ]^2(ab)^2+1+4\left ( \sqrt{2}-1 \right )ab+1$

$\Leftrightarrow ab\leq \frac{1}{2}$   (đúng theo am-gm)


Trong chủ đề: Max $P=(x^{3}+2)(y^{3}+2)$

08-02-2013 - 17:41

1. $P=[(2-x)^3+2][x^3+2]$
ta có $P'=0$=>$x=1,1-\sqrt{3},1+\sqrt{3}$
=>$MaxP=P(1+\sqrt{3})=P(1-\sqrt{3})$
=>$MinP=P(1)$


có cách nào ko dùng đạo hàm ko? mình chưa học tới đó. ko dc sử dụng