Nếu có thêm điều kiện $a,b,c\inN$ thì làm tiếp thế nào bạn?$a+\frac{1}{b}=b+\frac{1}{c}$
$\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}$
$\Leftrightarrow a-b=\frac{b-c}{bc}$
Tương tự ta có:
$\Leftrightarrow b-c=\frac{c-a}{ca}$
$\Leftrightarrow c-a=\frac{a-b}{ab}$
Do đó:
$(a-b)(b-c)(c-a)=\frac{(a-c)(b-c)(c-a)}{(abc)^2}$
$\Leftrightarrow (a-b)(b-c)(c-a)(a^2b^2c^2-1)=0$
$\Leftrightarrow \left[ \begin{array}{l} a=b=c \\ a^2b^2c^2=1 \end{array} \right.$
$\Leftrightarrow \left[ \begin{array}{l} a=b=c \\ abc=1 \end{array} \right.$ $(abc\neq -1$ vì $a,b,c>0)$
Trường hợp 1: $a=b=c$
Ta có: $a^{2011}+\frac{1}{b^{2012}}=b^{2011}+\frac{1}{c^{2012}}=c^{2011}+\frac{1}{a^{2012}}$ $($vì $a=b=c)$
Trường hợp 2: $abc=1$
Theo mình nghĩ chỗ này cần thêm điều kiện $a,b,c\in N,$ chứ nếu đề không có điều kiện này, ta thử 3 số $a=0,25;$ $b=2;$ $c=2$ thì thay vào trái với đpcm.
yellow
Giới thiệu
Chúng ta không thể biết chính xác 100% việc sẽ xảy ra trong tương lai
Và đây là điều duy nhất ta có thể biết 100% trong tương lai
Thống kê
- Nhóm: Pre-Member
- Bài viết: 371
- Lượt xem: 5163
- Danh hiệu: Sĩ quan
- Tuổi: Chưa nhập tuổi
- Ngày sinh: Tháng tư 30
-
Giới tính
Nam
-
Đến từ
THCS Mỹ Châu
Trong chủ đề: $a^{2011}+\frac{1}{b^{2012}...
30-12-2012 - 11:09
Trong chủ đề: Tính $M=(x^{4}-\frac{1}{x^{4...
29-12-2012 - 11:10
Bạn xem lại đề bài đi, bài này không thể làm được với điều kiện đó đâuXem lại đề bạn nhé. $a^{3}+b^{3}+c^{3}=abc$ mà.
Trong chủ đề: Giải phương trình nghiệm nguyên $13\sqrt{x}-7\sq...
29-12-2012 - 11:05
Phương trình đã cho tương đương với: $13\sqrt{x}-7\sqrt{y}=20\sqrt{5}$Giải phương trình nghiệm nguyên $13\sqrt{x}-7\sqrt{y}=\sqrt{2000}$
Đặt: $\sqrt{x}=a\sqrt{5}\geq 0;\sqrt{y}=b\sqrt{5}\geq 0$ với $a,b\in \mathbb{Z}^+$
$\Rightarrow 13a-7b=20$
$\Rightarrow a=\frac{20+7b}{13}=1+\frac{7(b+1)}{13}$
Do $a\in \mathbb{Z}^+$ và $(7;13)=1$ nên $13|b+1$
Đặt $b+1=13t (t\in \mathbb{Z}^+)$
$\Rightarrow b=13t-1$ và $a=7t+1$
$\Rightarrow \left\{\begin{matrix} x=5(1+7t)^2\\ y=5(13t-1)^2 \end{matrix}\right.$ với $t\in \mathbb{Z}^+$
Trong chủ đề: Chứng minh rằng: $\frac{a^2-6bc}{x}=\f...
28-12-2012 - 07:58
Bạn ơi, chỗ này đâu có bằng nhau $\frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x}{a^2-6bc}$Sử dụng tỉ lệ thức của lớp 7.
$$\begin{array}{l} \frac{x^2-6yz}{a}= \frac{4y^2-3xz}{2b}= \frac{9z^2-2xy}{3c} \\ \Rightarrow \frac{(x^2-6yz)^2}{a^2}= \frac{(4y^2-3zx)(9z^2-2xy)}{6bc}= \frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x}{a^2-6bc} \\ = \frac{(4y^2-3xz)^2}{4b^2}= \frac{(x^2-6yz)(9z^2-2xy)}{3ac}= \frac{(4y^2-3xz)^2-(x^2-6yz)(9z^2-2xy)}{4b^2-3ca}= \frac{2y}{4b^2-3ca} \\ = \frac{(9z^2-2xy)^2}{9c^2}= \frac{(x^2-6yz)(4y^2-3xz)}{2ab}= \frac{(9z^2-2xy)^2-(x^2-6yz)(4y^2-3xz)}{9c^2-2ab}= \frac{3z}{9c^2-2ab} \end{array}$$
Do đó $$\frac{a^2-6bc}{x}=\frac{4b^2-3ca}{2y}=\frac{9c^2-2ab}{3z}$$
Nó phải như thế này chứ: $\frac{(x^2-6yz)^2-(4y^2-3zx)(9z^2-2xy)}{a^2-6bc}= \frac{x(x^3+8y^3+27z^3-18xyz)}{a^2-6bc}$
Trong chủ đề: MathType v6.0 Full download
28-12-2012 - 07:43
- Diễn đàn Toán học
- → Đang xem trang cá nhân: Bài viết: yellow