Đến nội dung


End

Đăng ký: 08-08-2012
Offline Đăng nhập: 13-06-2015 - 20:52
*----

Chủ đề của tôi gửi

Thi thử lần 2. Hội các thủ khoa Hà Nội.

29-04-2013 - 09:26

164282_375621842555948_1409494650_n.jpg


 


$I=-\int_{\frac{\pi }{3}}^{...

13-03-2013 - 19:39

$I=-\int_{\frac{\pi }{3}}^{\frac{\pi }{6}}\frac{sin^{8}x}{cos^{4}x}dx$

Đề thi thử ĐH lần II- THPT Chu Văn An- Thái Nguyên.

11-03-2013 - 16:57

Phần chung cho tất cả các thí sinh (7 điểm)

Câu 1:(2 điểm)
Cho hàm số: $y=\frac{-2x-4}{x+1}$
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số
2. Biện luận số giao điểm của đồ thị hàm số trên với đường thẳng $2x-y+m=0$. Trong trường hợp có 2 giao điểm M và N, hãy tìm quĩ tích điểm I là trung điểm của M, N.

Câu 2:(2 điểm)
1. Giải PT: $2sin^{3}x -cos2x+cosx=0$
2.Tìm m để hệ PT sau có nghiệm duy nhất: $\left\{\begin{matrix}
\sqrt{x}+\sqrt{1-y} =m+1& \\
\sqrt{y}+\sqrt{1-x}=m+1&
\end{matrix}\right.$

Câu 3:(1 điểm)
Tính tích phân: $\int_{0}^{\frac{\pi }{2}}\frac{3sinx-2cosx}{(cosx+sinx)^{3}}dx$

Câu 4:(1 điểm)

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, cạnh bên hợp với đáy 1 góc $45^{0}$ . Gọi P là trung điểm BC, chân đường vuông góc hạ từ A' xuống (ABC) là H sao cho : $\overrightarrow{AP}=\frac{1}{2}\overrightarrow{AH}$
Gọi K là trung điểm AA', $(\alpha )$ là mặt phẳng chứa HK và song song BC cắt BB' và CC' tại M và N. TÍnh tỉ số thể tích: $\frac{V_{ABCKMN}}{V_{A'B'C'KMN}}$

Câu 5:(1 điểm)
Cho 3 số dương x,y,z thay đổi và thỏa mãn $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2013$. Tìm giá trị lớn nhất của biểu thức:
P=$\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}$

Phần riêng (3 điểm)Thí sinh chỉ được làm 1 trong 2 phần (A hoặc B)

Câu 6a:(2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxyz, cho đường thẳng d có PT tham số: $\left\{\begin{matrix} x=-2+t & & \\ y=-2t & & \\ z=2+2t& & \end{matrix}\right.$. Gọi $\Delta$ là đường thẳng đi qua A(4;0;-1) và song song với đường thẳng d. Trong các mặt phẳng qua $\Delta$. Hãy viết phương trình mặt phẳng có khoảng cách đến đường thẳng d là lớn nhất.

2.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn © và đường thẳng $\Delta$ xác định bởi: $©: x^{2}+y^{2}-4x-2y=0, \Delta : x+2y-12=0$. Tìm điểm M trên $\Delta$ sao cho từ M kẻ đc tới © 2 tiếp tuyến lập với nhau 1 góc $60^{0}$.
Câu 7a : Giải PT: $\log _{4}(4-x)^{3}+\frac{3}{2}\log _{\frac{1}{4}}(x+2)^{2}= 3+ \log _{\frac{1}{4}}(x+6)^{3}$

Câu 6b:(2 điểm)
1.Trong mặt phẳng Oxyz cho đường tròn $©: (x-1)^{2}+ (y-2)^{2}=4$ và đường thẳng
d: x-y+7=0 . Tìm trên d điểm M mà từ đó kẻ đc 2 tiếp tuyến MA, MB tới ©(Với A,B là 2 tiếp điểm ) sao cho độ dài AB đạt giá trị nhỏ nhất.

2.Cho mặt phẳng: $(P): x-2y+2z-1=0$ và các đường thẳng: $d_{1}:\frac{x-1}{2}=\frac{y-3}{-3}=\frac{z}{2}; d_{2}: \frac{x-5}{6}=\frac{y}{4}=\frac{z+5}{-5}$
Tìm các điểm $M\epsilon d_{1}$ và $N\epsilon d_{2}$ sao cho MN//(P) và cách (P) 1 khoảng bằng 2.
Câu 7b:
Một hộp bi có 5 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh. Hỏi có bao nhiêu cách lấy ra 4 viên bi trong đó số bi đỏ lớn hơn số bi vàng.

$\int \frac{cosx}{x}dx$

20-02-2013 - 14:09

Giúp mình nha:

$\int \frac{cosx}{x}dx$

[Thắc mắc] Cách chuyển PT đường thẳng về dạng cơ bản.

07-11-2012 - 21:35

Mình mới học về phần này, thấy pt đường thẳng có dạng
VD: $\left\{\begin{matrix} 2x-y-z=0 & \\ x+3z-5=0 & \end{matrix}\right.$

Vậy mình hỏi làm sao để chuyển nó về dạng cơ bản.