Đến nội dung

bangbang1412

bangbang1412

Đăng ký: 18-02-2013
Offline Đăng nhập: Hôm qua, 03:16
****-

Sưu tầm một số bài tập tô-pô đại cương

20-01-2024 - 23:20

Mình có một số bài tập môn tô-pô đại cương đăng lên để mình và các bạn cùng giải. Đây là phần chuẩn bị cho môn condensed math mà mình đang học. Post đầu tiên về không gian Hausdorff. Nhắc lại một số kiến thức.

 

  • Không gian tô-pô gọi là $T_1$ (Frechet) nếu mọi điểm đều đóng.
  • Không gian tô-pô gọi là $T_2$ (Hausdorff) nếu mọi cặp hai điểm đều tách được bởi các lân cận.
  • Không giân tô-pô gọi là $T_4$ nếu mọi cặp hai tập đóng rời nhau đều tách được bởi các lân cận.
  • Không gian tô-pô gọi là chuẩn tắc nếu nó $T1+T4$ (cũng tương đương $T2+T4$).

Bài 1. Chứng minh các khẳng định sau.

  • a) Một không gian con (với tô-pô cảm sinh) của không gian Hausdorff là không gian Hausdorff.
  • b) Cho $(X_i)_{ i\in I}$ là một họ các không gian tô-pô khác rỗng, tích $\prod_{i \in I} X_i$ là Hausdorff khi và chỉ khi mỗi $X_i$ là Hausdorff.
  • c) Cho $(X_i)_{i \in I}$ là một hệ xạ ảnh các không gian tô-pô, chứng minh rằng nếu mỗi $X_i$ Hausdorff thì $\varprojlim X_i$ là Hausdorff.
  • d) Cho ví dụ chứng tỏ rằng $\varinjlim X_i$ nói chung không Hausdorff ngay cả khi mỗi $X_i$ Hausdorff.

Lời giải:

 

Bài 2. Cho $\pi \colon X \longrightarrow Y$ là một ánh xạ liên tục + toàn ánh giữa hai không gian tô-pô. Giả sử $\pi$ đóng (ảnh của tập đóng là đóng). Chứng minh nếu $X$ là $T_1$ hoặc $T_4$ thì $Y$ có tính chất tương ứng. Nói riêng nếu $X$ chuẩn tắc thì $Y$ là Hausdorff.

 

Lời giải:

 

Bài 3. Chứng minh rằng không gian tô-pô $X$ là Hausdorff khi và chỉ khi ánh xạ đường chéo $\Delta \colon X \longrightarrow X \times X, x \longmapsto (x,x)$ là ánh xạ liên tục đóng.

 

Lời giải:

 

Bài tập dưới đây nâng cao hơn một chút, nhắc lại một số kiến thức: cho $\mathcal{C} \subset\mathcal{D}$ là một phạm trù con đầy đủ, ta gọi $\mathcal{C}$ là phản xạ (refletive) trong $\mathcal{D}$ nếu hàm tử nhúng $\mathcal{C} \longrightarrow \mathcal{D}$ nhận một liên hợp trái.

 

Bài 4. Chứng minh rằng phạm trù các không gian tô-pô Hausdorff là một phạm trù con phản xạ của phạm trù các không gian tô-pô.

 

Lời giải:

 

Gợi ý: sử dụng định lý liên hợp hàm tử của Frey và bài tập số 1).


Một số tài liệu về lý thuyết phạm trù mô hình và phạm trù vô hạn

02-01-2024 - 20:37

Trước đây mình chỉ sử dụng phạm trù mô hình tuy nhiên giờ đây có một số xây dựng mà mình thấy không thể tiếp tục với phạm trù mô hình. Cụ thể là việc lấy giới hạn đồng luân của các phạm trù mô hình, theo mình biết thì có một định nghĩa trong

  • Julia E.Bergner, Homotopy limits of model categories and more general homotopy theories.

về giới hạn lỏng (lax homotopy limits) của các phạm trù mô hình tổ hợp (combinatorial model categories). Vấn đề này có vẻ không xuất hiện trong lý thuyết phạm trù vô hạn: tồn tại phạm trù vô hạn của các phạm trù vô hạn.và ta có thể lấy giới hạn dễ dàng hơn. Mình chưa hiểu chi tiết kỹ thuật nào làm phạm trù mô hình bị "yếu thế" so với phạm trù vô hạn. Dĩ nhiên không nói tới việc mỗi phạm trù mô hình đơn hình đều sinh ra một phạm trù vô hạn chứa "đủ" các thông tin của chính nó thì trên đây là lý do mà mình bắt đầu thử học phạm trù vô hạn. Mình chia sẻ một số note mang tính cá nhân với mọi người xem như một nguồn tham khảo cho ai muốn bắt đầu mà chưa biết bắt đầu từ đâu.

 

Hai cuốn kinh thánh chắc chắn là:

  • J. Lurie, Higher Topos Theory (HTT).
  • J. Lurie, Higher Algebra (HA).

Và tuỳ theo khẩu vị mà người ta có thể đọc các tài liệu liên quan. Tuy nhiên để bắt đầu với HTT thì không hề dễ, mình giới thiệu một số tài liệu khác mang tính dẫn nhập hơn. Trước tiên mình tin để học phạm trù vô cực, người ta phải biết về lý thuyết các đơn hình và do đó cũng ít nhiều đụng tới phạm trù mô hình, cuốn

  • Paul G. Goerss, John F. Jardine, Simplicial Homotopy Theory.

rất đáng tin cậy, đặc biệt là chương đầu tiên về tập đơn hình và chương thứ hai về phạm trù mô hình. Về phạm trù mô hình, hai cuốn kinh điển có lẽ là

  • Mark Hovey, Model Categories: cuốn này dẫn nhập về phạm trù mô hình và nếu bạn chỉ muốn tìm hiểu về phạm trù mô hình một cách trừu tượng thì chương một là đủ, nếu bạn muốn các ví dụ thì hai chương sau cũng tốt. Các chương còn lại tuỳ gu.
  • Philip S. Hirschhorn, Model Categories and Their Localizations: một "thiếu sót" lớn trong cuốn của Hovey là lý thuyết địa phương hoá Bousfield được trình bày rất chi tiết trong cuốn của Hirschhorn. Cuốn sách này chia làm hai phần, nhưng phần thứ hai phụ thuộc rất chặt vào phần thứ nhất và do đó chương bắt đầu là chương bảy chứ không phải chương một. Cuốn này trình bày mọi thứ cực kỳ chặt chẽ và liên kết mọi phát biểu với nhau nên rất thích hợp để làm trích dẫn.
  • J. Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique: chương bốn luận án của Joseph Ayoub là một tài liệu vô cùng chi tiết về lý thuyết phạm trù mô hình và cực kỳ self-contained. Nó trình bày tất cả những gì bạn cần biết về phạm trù mô hình (địa phương hoá Bousfield đã được đơn giản hoá điều kiện một chút so với cuốn Hirschhorn). Nếu bạn không muốn đọc hai cuốn đầu và muốn một phong cách "đi-thẳng-vào-vấn-đề" thì luận án của Ayoub là một tài liệu trên cả xuất sắc.

Hai tài liệu bên ngoài tham khảo thêm.

  • David Barnes, Constanze Roitzheim, Foundations of Stable Homotopy Theory.
  • D.C.Cisinski, Higher Categories and Homotopical Algebra.

Bây giờ bạn có thể bắt đầu với phạm trù vô cực (thực chất tài liệu trên chỉ là tham khảo và có lẽ chỉ bắt đầu với cuốn Goerss và Jardine là tạm đủ rồi) một cách không chính thức (tức là không chạm vào HTT hay HA).

  • Markus Land, Introduction to Infinity-Categories: một cuốn rất sơ cấp về phạm trù vô hạn, có thể nói là vô cùng baby version của HTT, nó có cả bài tập.
  • Charles Rezk, Introduction to quasi-categories: một note trình bày theo phong cách khá chi tiết, phù hợp với ai muốn đọc tài liệu tỉ mỉ. Nhưng nó khá giới hạn về overview.
  • Moritz Groth, A short course on $\infty$-categories: một note xuất sắc trình bày những gì bạn nên biết về phạm trù vô hạn. Nó không có mấy chứng minh nhưng mình tin đây là một điểm bắt đầu rất đáng tin cậy. Dù sao người ta nên biết về philosophy of $\infty$-categories trước khi học lý thuyết về chúng và đây là một tài liệu làm được điều này. Nó được viết phần nào giản lược từ đoạn đầu của HTT và HA.
  • Fabian Hebestreit, Ferdinand Wagner, Lecture notes for Algebraic and Hermitian K-Theory: ghi chép của Wagner từ bài giảng của Hebestreit, tuy không có chứng minh (chứng minh cần xem lại bài giảng của Hebestreit) nhưng như tài liệu của Groth nó trình bày ý tưởng rất tốt. Có thể đọc sau note của Groth nếu bạn muốn có thêm cái nhìn mang tính kỹ thuật trước khi bắt đầu với HTT.
  • Một số tài liệu khác từ phần tham khảo ở nlab.

Và rồi bạn có thể quay lại với HTT và HA. Chúc may mắn :icon6:


Bó bướng bỉnh là gì?

07-09-2023 - 21:22

Một bó bướng bỉnh... là gì?

 

Bởi Mark Andrea de Cataldo và Luca Migliorini

 

Các đa tạp được định nghĩa bằng cách dán các tập con mở của không gian Euclide. Các dạng vi phân, các trường vector, vân vân, được định nghĩa một cách địa phương và sau đó được dán để sinh ra một đối tượng toàn cục. Khái niệm bó là hiện thân của ý tưởng dán. Các bó được sinh ra theo nhiều cách: các bó của các dạng vi phân, của các trường vector, của các toán tử vi phân, các bó hằng và hằng địa phương, vân vân. Một bó hằng địa phương (một hệ địa phương) trên một không gian $X$ được xác định bởi đơn đạo của nó, i.e., bởi một biểu diễn của nhóm cơ bản $\pi_1(X,x)$ trong nhóm các tự đẳng cấu của thớ tại $x \in X$: bó của các định hướng trên dải Möbius gán $-\operatorname{Id}$ tới các phần tử sinh của nhóm cơ bản $\mathbb{Z}$. Một bó, hoặc thâm chí một cấu xạ giữa các bó, có thể được dán lại từ dữ liệu địa phương của nó: đạo hàm ngoài có thể xem như một cấu xạ giữa các bó của các dạng vi phân; việc dán là khả thi bởi vì đạo hàm ngoài độc lập với việc chọn các toạ độ địa phương.

Lý thuyết bó được hoàn thiện hơn bằng các xét các phức của các bó. Một phức của các bó $K$ là một họ các bó $\left \{K^i \right \}_{i \in \mathbb{Z}}$ và các cấu xạ $d^i: K^i \longrightarrow K^{i+1}$ thoả mãn $d^2 = 0$. Bó đối đồng điều thứ $i$ $\mathcal{H}^i(K)$ là $\operatorname{Ker} d^i/ \operatorname{Im}  d^{i+1}$. (Bó hoá của) Phức de Rham $\mathcal{E}$ là phức với các thành phần là các bó $\mathcal{E}^i$ của các $i$-dạng vi phân và các vi phân $d^i: \mathcal{E}^i \longrightarrow \mathcal{E}^{i+1}$ được cho bởi đaọ hàm ngoài của các dạng vi phân. Bằng bổ đề Poincaré, các bó đối đồng điều đều bằng không, ngoại trừ $\mathcal{H}^0 \simeq \mathbb{C}$, bó hằng.

Định lý de Rham, phát biểu rằng đối đồng điều của một bó hằng bằng với các dạng đóng modulo các dạng khớp, dẫn tới việc rằng $\mathbb{C}$ và $\mathcal{E}$ là không thể phân biệt một cách đối đồng điều với nhau, thậm chí tại mức địa phương. Nhu cầu đồng nhất hai phức chứa thông tin đối đồng điều giống nhau thông qua một đẳng cấu dẫn tới khái niệm của phạm trù dẫn xuất: các vật là các phức và các mũi tên được thiết kế để đạt được các sự đồng nhất như mong muốn. Phép nhúng các phức $\mathbb{C} \subseteq \mathcal{E}$ được thăng hạng theo sắc lệnh lên một đẳng cấu trong phạm trù dẫn xuất bởi vì nó cảm sinh một đẳng cấu ở mức của các bó đối đồng điều.

Trong khi phạm trù dẫn xuất đưa vào một lớp dày sự trừu tượng, nó mở rộng phạm vi và tính linh hoạt của lý thuyết. Ta định nghĩa các nhóm đối đồng điều của một phức và thác triển các toán tử thông thường của tô-pô đại số lên các phức của các bó: các kéo lùi, các đẩy xuôi, các tích cup và cap, vân vân. Cũng có một phiên bản tổng quát cho đối ngẫu của các phức, tổng quát hoá đối ngẫu Poincaré cổ điển.

Các bó bướng bỉnh tồn tại trên các không gian có kì dị: các không gian giải tích, các đa tạp đại số, các không gian PL, các giả-đa tạp, vân vân. Để dễ dàng trình bày, chúng ta hạn chế xuống các bó của các không gian vector trên các đa tạp đại số phức và xuống các bó bướng bỉnh liên quan đến cái được gọi là tính bướng trung tâm (tạm dịch từ middle perversity). Để tránh đụng đến các nghịch lý như các bó được định giá trên tập Cantor, chúng ta áp đặt thêm một điều kiện kĩ thuật được gọi là tính khả dựng (tạm dịch từ constructibility). Nhắc lại rằng phạm trù $D_X$ của các phức khả dựng bị chặn của các bó trên $X$ nằm trong phạm trù dẫn xuất và ổn định dưới nhiều toán tử tô-pô vừa nhắc tới ở trên. Nếu $K$ nằm trong $D_X$, chỉ một số hữu hạn các bó đối đồng điều của nó khác không và, với mọi $i$, tập hợp $\mathrm{supp} \ \mathcal{H}^i(K)$, bao đóng của tập các điểm mà tại đó thớ là khác không, là một đa tạp đại số con.

Một bó bướng bỉnh trên $X$ là một phức khả dựng bị chặn $P \in D_X$ sao cho điều kiện sau thoả mãn với $K = P$ và đối ngẫu của nó $P^{\vee}$:
\begin{equation} \dim_{\mathbb{C}} \mathrm{supp} \ \mathcal{H}^{-i}(K) \leq i, \ \ \ \forall \ i \in \mathbb{Z}.\end{equation} Một cấu xạ giữa các bó bướng bỉnh là một mũi tên trong $D_X$.

Thuật ngữ "bó" xuất phát từ sự thật rằng, cũng giống như trong trường hợp các bó thông thường, (các cấu xạ giữa) các bó bước bỉnh có thể được dán; không giống như "bướng bỉnh", xem bên dưới. Lý thuyết của các bó bướng bỉnh có nguồn gốc trong hai khái niệm là đối đồng điều giao và $\mathcal{D}$-module. Như chúng ta thấy bên dưới, các bó bướng bỉnh và các $\mathcal{D}$-module được kết nối bởi tương ứng Riemann-Hilbert.

Giờ là thời điểm cho các ví dụ. Nếu $X$ không có kì dị, thì $\mathbb{C}_X[\dim X]$, i.e., bó hằng tại bậc $-\dim_{\mathbb{C}}X$, là tự-đối ngẫu và bướng bỉnh. Nếu $Y \subseteq X$ là một đa tạp con đóng không kì dị, thì $\mathbb{C}_Y[\dim Y]$, xem như một phức trên $X$, là một bó bướng bỉnh trên $X$. Nếu $X$ có kì dị, thì $\mathbb{C}_X[\dim X]$ thường không là một bó bướng bỉnh. Mặt khác, phức đối đồng điều giao (xem bên dưới) là một bó bướng bỉnh, bất kể $X$ có kì dị hay không. Mở rộng của hai bó bướng bỉnh là một bó bướng bỉnh. Ví dụ sau có thể đóng vai trò như một trường hợp thử cho những định nghĩa đầu tiên trong lý thuyết của các $\mathcal{D}$-module. Lấy $X = \mathbb{C}$ là đường thẳng phức với gốc $\mathfrak{o} \in X$, gọi $z$ là toạ độ chỉnh hình chuẩn, gọi $\mathcal{O}_X$ là bó các hàm chỉnh hình trên $X$, gọi $a$ là một số phức, và gọi $D$ là toán tử vi phân $D:f \longmapsto zf - af'$. Phức $P_a$
\begin{equation} \label{eq:2}
    0 \longrightarrow P^{-1}_a \coloneqq \mathcal{O}_X \overset{D}{\longrightarrow} P_a^0 \coloneqq \mathcal{O}_X \longrightarrow 0
\end{equation}
là bướng bỉnh. Nếu $a \in \mathbb{Z}^{\geq 0}$, khi đó $\mathcal{H}^{-1}(P_a) = \mathbb{C}_X$ và $\mathcal{H}^0(P_a) = \mathbb{C}_0$. Nếu $a \in \mathbb{Z}^{<0}$, khi đó $\mathcal{H}^{-1}(P_a)$ là mở rộng bởi không tại $\mathfrak{o}$ của bó $\mathbb{C}_{X \setminus \mathfrak{o}}$ và $\mathcal{H}^0(P_a) = 0$. Nếu $a \notin \mathbb{Z}$, khi đó $\mathcal{H}^{-1}(P_a)$ là mở rộng bởi không tại $\mathfrak{o}$ của hệ địa phương trên $X\setminus \mathfrak{o}$ được gán với các nhánh của hàm đa trị $z^a$ và $\mathcal{H}^0(P_a)=0$. Trong mỗi trường hợp, đơn đạo tương ứng gửi phần tử sinh theo hướng dương của $\pi_1(X \setminus \mathfrak{o},1)$ tới $e^{2\pi i a}$. Đối ngẫu của $P_a$ là $P_{-a}$ (điều này tương thích tốt với các khái niệm về liên hợp của  toán tử vi phân và đối ngẫu của các $\mathcal{D}$-module). Mỗi $P_a$ là mở rộng của bó bướng bỉnh $\mathcal{H}^0(P_a)[0]$ bởi bó bướng bỉnh $\mathcal{H}^{-1}(P_a)[1]$. Mở rộng là tầm thường (tổng trực tiếp) khi và chỉ khi $a \notin \mathbb{Z}$.

Một hệ địa phương trên một đa tạp không kì dị có thể biến thành một bó bướng bỉnh bằng cách xem nó như một phức với một thành phần duy nhất tại bậc hợp lý. Mặt khác, một bó bướng bỉnh hạn chế xuống một hệ địa phương trên một đa tạp con mở trù mật. Chúng ta muốn hiểu rõ khẩu hiệu sau: các bó bướng bỉnh là phiên bản kì dị của các hệ địa phương. Để làm vậy, chúng ta bàn tới hai ý tưởng tưởng phổ biến dẫn đến sự khai sinh của các bó bướng bỉnh vào khoảng ba mươi năm trước:tương ứng Riemann-Hilbert suy rộng (RH) và đối đồng điều giao (IH).

 

(RH) Vấn đề thứ 21 của Hilbert liên quan đến những phương trình vi phân kiểu-Fuchs trên một diện Riemann thủng $\Sigma$. Khi ta chạy quanh các vết thủng, các nghiệm bị biến đổi: bó của các nghiệm là một hệ địa phương trên $\Sigma$.

 

Vấn đề thứ 21 hỏi liệu rằng có phải mọi hệ địa phương đều được sinh ra theo cách này (nó thực sự sinh ra theo cách này). Bó hóa của các phương trình vi phân đạo hàm riêng tuyến tính trên một đa tạp dẫn đến khai niệm của $\mathcal{D}$-module. Một $\mathcal{D}$-module chính quy holonomic trên một đa tạp phức $M$ là một mở rộng của các phương trình kiểu Fuchs trên $\Sigma$. Bó của các nghiệm bây giờ được thay thế bởi phức của các nghiệm, cái mà, rất ấn tượng, thuộc vào $D_M$. Trong \ref{eq:2}, phức của các nghiệm là $P_a$, bó của các nghiệm của $D(f)=0$ là $\mathcal{H}^{-1}(P_a)$, và $\mathcal{H}^0(P_a)$ liên quan tới tính (không) giải được của $D(f)=g$. Gọi $\mathcal{D}^b_{r,h}(M)$ là phạm trù dẫn xuất bị chặn của các $\mathcal{D}$-module trên $M$ với dối đồng điều là chính quy holonomic. RH phát biểu rằng phép gán (đối ngẫu của) phức của các nghiệm cảm sinh ra một tương đương phạm trù $\mathcal{D}^b_{r,h}(M) \simeq  D_M$. Các bó bướng bỉnh bước vào trung tâm của sân khấu: chúng tương ứng với, thông qua RH, các $\mathcal{D}$-module chính quy holonomic (xem như các phức tập trung tại bậc không).

 

Để thấy sự tương ứng với khẩu hiệu được nhắc đến bên trên, phạm trù của các bó bướng bỉnh có chung các tính chất hình thức sau với phạm trù các hệ địa phương: nó là Abel (các hạt nhân, đối hạt nhân, các ảnh và các đối ảnh tồn tại, và đối ảnh đẳng cấu với ảnh), ổn định dưới tác động của đối ngẫu, Noether (điều kiện xích tăng thỏa mãn), và Artin (điều kiện xích giảm thỏa mãn), i.e., mọi bó bướng bỉnh là một mở rộng liên tiếp hữu hạn lần của các bó bưởng bỉnh đơn (không vật con). Trong ví dụ của chúng ta, các bó bướng bỉnh \ref{eq:2} là đơn khi và chỉ khi $a \in \mathbb{C} \setminus \mathbb{Z}$.

 

Các bó bướng bỉnh đơn là gì? Đối đồng điều giao cho ta câu trả lời.

 

(IH) Các nhóm đối đồng điều giao của một đa tạp kì dị $X$ với các hệ số trong một hệ địa phương là một bất biến đại số của đa tạp đó. Chúng trùng với đối đồng điều thông thường khi $X$ không kì dị và các hệ số là hằng. Các nhóm này ban đầu được định nghĩa và nghiên cứu bằng cách sử dụng lý thuyết của các xích hình học với mục đích nghiên cứu thiếu sót, do sự hiện diện của các kì dị, của đối ngẫu Poincaré cho đồng điều thông thường, và để đưa ra một biện pháp khắc phục cho nó bằng cách xét lý thuyết đồng điều sinh ra bởi việc chỉ xét các xích mà giao với tập kì dị theo cách kiểm soát được. Trong ngữ cảnh này, những dãy số nguyên nhất định, gọi là các sự bướng bỉnh (perversities), được đưa ra để cho một phép đo rằng một xích giao với tập kì dị như thế nào, do đó mà có thuật ngữ "bướng bỉnh". Các nhóm đối đồng điều giao vừa được định nghĩa thỏa mãn các kết luận của đối ngẫu Poincaré và của định lý siêu phẳng Lefschetz.

 

Mặt khác, các nhóm đối đồng điều giao còn có thể được xem như các nhóm đồi đồng điều của một số phức nhất định trong $D_M$: các phức giao của $X$ với các hệ số trong hệ địa phương. Đó là một bước ngoặt đáng chú ý trong cốt truyện của câu chuyện này khi các bó bướng bỉnh đơn chính là các phức giao của các đa tạp con bất khả quy của $X$ với các hệ số được cho bởi các hệ địa phương đơn!

Giờ chúng ta ở chỗ phải làm rõ khẩu hiệu ban đầu. Một hệ địa phương $L$ trên một đa tạp con $Z \subset M$ sinh một $\mathcal{D}$-module chính quy holonomic được định giá trên bao đóng $\overline{Z}$. Cùng $L$ đó cho ta một phức giao của $\overline{Z}$ with các hệ số trong $L$. Cả hai đối tượng mở rộng $L$ từ $Z$ lên $\overline{Z}$ theo các kì dị $\overline{Z}\setminus Z$. Bằng RH, phức giao chính là phức của các nghiệm của $\mathcal{D}$-module này.

 

Một vai trò trụ cột trong ứng dụng của lý thuyết của các bó bướng bỉnh được thể hiện bởi định lý phân rã: cho $f: X \longrightarrow Y$ là một cấu xạ riêng của các đa tạp; khi đó các nhóm đối đồng giao của $X$ với các hệ số trong một hệ địa phương đơn đẳng cấu với tổng trực tiếp của một họ các nhóm đối đồng giao của các đa tạp đại số con của $Y$, với hệ số trong các hệ địa phương đơn. Ví dụ, nếu $f: X\longrightarrow Y$ là một giải kì dị của $Y$, khi đó các nhóm đối đồng điều giao của $Y$ là một tổng trực tiếp của các nhóm đối đồng điều thông thường của $X$. Tính chẻ ra "đơn giản-nhất-có thể" này là một sự thật sâu sắc nhất được biết đến kết nối đồng điều của các đa tạp đại số phức và các cấu xạ. Nó sai trong hình học giải tích và trong hình học đại số thực. Sự phân rã của các nhóm đối đồng điều giao của $X$ là phản ảnh trong đối đồng điều của một phân rã mịn hơn của các phức trong $D_Y$. Chứng minh ban đầu của sử dụng hình học đại số trên các trường hữu hạn (các bó bưởng bỉnh hoàn toàn có nghĩa trong nhánh này).

Một ứng dụng nổi bật của vòng tròn những ý tưởng này là sự thật rằng các nhóm đối đồng điều giao của các đa tạp (varieties) xạ ảnh có cùng các tính chất cổ điển với các nhóm đối đối đồng điều của các đa tạp (manifolds) xạ ảnh: định lý $(p,q)$-phân rã Hodge, định lý Lefschetz mạnh, và quan hệ Hodge-Riemann song tuyến tính. Điều này, chắc chắn, cùng với đối ngẫu Poincaré và định lý siêu phẳng Lefschetz bên trên.

 

Những ứng dụng của lý thuyết của các bó bướng bỉnh bao quát từ hình học tới tổ hợp tới giải tích đại số. Những ứng dụng ấn tượng nhất nằm trong địa hạt của lý thuyết biểu diễn, nơi mà sự hiện diện của chúng đã dẫn tới một cuộc cách mạng thực sự ngoạn mục: những chứng minh của giả thuyết Kazhdan-Lusztig, của hình học hóa của đẳng cấu Satake, và, gần đây, của bồ đề cơ bản trong chương trình Langlands.

 

Dịch bởi Phạm Khoa Bằng.


Xung quanh phương trình $2zf'(z) = f(z)$

05-09-2023 - 11:23

Cho $X = \mathbb{C}$ là mặt phẳng phức, xét ánh xạ chỉnh hình
$$f: X \longrightarrow X, z \longmapsto z^2.$$ Kí hiệu $\mathbb{C}_X$ là bó hằng với giá trị $\mathbb{C}$ trên $\mathbb{C}$.
  • Cho $x \in X$, tính thớ của bó $f_*(\mathbb{C}_X)$ tại $x$, suy ra rằng bó này không hằng địa phương.
  • Xét phân hoạch $X = Y \sqcup Z$ trong đó $Y = \mathbb{C} \setminus \left \{0 \right \}$ and $Z = \left \{0 \right \}$. Chứng minh rằng các hạn chế $f_*(\mathbb{C}_X)_{\mid Y}$ và $f_*(\mathbb{C}_X)_{\mid Z}$ đều là các bó hằng địa phương (locally constant).
  • Xét phương trình $2zf'(z) = f(z)$ trên $Y$, chứng minh rằng đơn đạo của phương trình này là không tầm thường. Hệ số $2$ trong $2zf'(z)$ có quan trọng không? Nếu thay đổi bằng một số không nguyên thì đơn đạo thay đổi như thế nào?
Phần tiếp theo ta sẽ chứng minh rằng $\mathbb{C}_Y$ là một hạng tử trực tiếp của $f_*(\mathbb{C}_X)_{\mid Y}$. Định nghĩa bó $\mathcal{Q}$ trên $\mathbb{C}^{\times} = \mathbb{C} \setminus \left \{0 \right \}$ bởi
$$\mathcal{Q}(U) = \left \{g: U \longrightarrow \mathbb{C} \mid 2zg'(z) = g(z) \right \}$$ với mỗi tập mở $U \subset \mathbb{C}^{\times}$.
  • Chứng minh rằng $\mathcal{Q}$ là hằng địa phương.
  • Chứng minh rằng $\mathcal{Q}$ không hằng bằng cách chỉ ra nó không có một lát cắt toàn cục nào.
  • Bằng cách xét hai cấu xạ $$\mathbb{C}_Y(U) \longrightarrow (f_{\mid Y})_*(\mathbb{C}_Y)(U), \ \ \ \ g \longmapsto g \circ f$$ và $$\mathcal{Q}(U) \longrightarrow (f_{\mid Y})_*(\mathbb{C}_Y)(U), \ \ \ \ g \longmapsto \frac{g \circ f}{z}$$ hãy chứng minh rằng $(f_{\mid Y})_*(\mathbb{C}_Y) \simeq \mathbb{C}_Y \oplus \mathcal{Q}$.

Đánh giá tổng Kloosterman và biến đổi Fourier l-adic

21-08-2023 - 23:26

Đây là một bài mình viết sau khi đi nghe seminar do giáo sư Ngô Bảo Châu báo cáo hôm 17/8 tại viện Toán học với tựa đề Perverse sheaves and fundamental lemmas tuy nhiên giáo sư không có đủ thời gian để đi vào cả hai chủ đề mà bài nói xoay quanh việc đánh giá tổng Kloosterman bằng cách chuyển ngôn ngữ hàm số sang ngôn ngữ đối đồng điều và áp dụng giả thuyết Weil. Do đó mình để tựa đề như trên. Để thuận tiện, mình sẽ sử dụng tiếng anh.

 

Follow Katz's lectures on Weil II, let me spend some momemt to recall the motivating problem: given a prime $p$ and an integer $a$ s.t. $(a,p)=1$, the Kloosterman sum is defined as the complex number

$$\mathrm{Kl}(a,p) = \sum_{(x,y) \in \mathbb{F}_p: xy = a} \operatorname{exp}\left(\frac{2\pi i}{p}(x+y) \right).$$ By an elementary argument, one can see that this sum is a real number and in the early time when Kloosterman studied the Hardy-Littlewood circle method, he wanted to bound this sum by a function of $p$.

 

Some motivations

 

Định lý

(Kloosterman 1926) For any $\epsilon > 0$, we have $\left |\mathrm{Kl}(a,p) \right| < Cp^{3/4+\epsilon}$. 

Kloosterman's proof was quite elementary, however, the bound can be sharpen much more as follows.

Định lý

(Weil) We have $\left |\mathrm{Kl}(a,p) \right| \leq 2\sqrt{p}$.

This estimate is a consequence of Weil's proof of the "early Riemann hypothesis". The analytic version of Kloosterman sums is

$$\int_{-\infty}^{\infty}e^{i(ax+x^{-1})}dx$$ which is clearly not convergent, but we can approximate it by $\sqrt{a}K(\sqrt{a})$ where $K$ is the Bessel function. More generally, one can consider the Kloosterman sum

$$\mathrm{Kl}(a,p) = \sum_{xy=a \in \mathbb{F}_p} \psi(x+y) = \sum_{x \in \mathbb{F}_p}\psi(ax+x^{-1})$$ for any character $\psi:\mathbb{F}_p \longrightarrow \mathbb{C}^{\times}$, i.e. $\psi(x+y)=\psi(x)\psi(y)$. Here we can also prove that $\left| \mathrm{Kl}(a,p) \right| \leq 2 \sqrt{p}$ but even more, we can prove that

$$\mathrm{Kl}(a,p) = \alpha + \overline{\alpha}$$ where $\alpha$ is a complex number with $\left| \alpha \right| = \sqrt{p}$. This remains true if we replace $p$ by some of its power. This is where algebraic geometry enters the play. The first task is to transfer functions to sheaves. At the level of sheaves, we have more operations to manipulate (at least functions do not have something like duality).  But before one can see why we have to translate everything to cohomology language, one needs to have some clues about Grothendieck's formalism of six operations in $l$-adic cohomology.

 

l-adic cohomology

 

Let's fix a finite field $k=\mathbb{F}_{q}$ (where $q = p^n$ and $p$ prime) and $X/k$ be a variety. Given an integer $n$ invertible on $k$, then we can define that derived category $D^b_c(X,\mathbb{Z}/n)$ of chain complexes (modulo quasi-isomorphisms) of etale sheaves having cohomology sheaves are constructible. If $l \neq p$ is another prime, we define

$$D^b_c(X) = D^b_c(X, \overline{\mathbb{Q}}_l) = \left( \underset{\longleftarrow}{\lim} \ D^b_c(X,\mathbb{Z}/l^n\mathbb{Z}) \right) \otimes_{\mathbb{Z}_l} \overline{\mathbb{Q}}_l.$$ This definition is subtle and technical so one might follow Bhatt and Scholze's instruction to pretend that $D^b_c(X,\overline{\mathbb{Q}}_l)$ is some full subcategory of a derived category $D^b(X,\overline{\mathbb{Q}}_l)$. This is in fact does not cause any harm because almost every result for $D^b_c(X)$ is already true at the level $D^b_c(X,\mathbb{Z}/n\mathbb{Z})$. As far as I understand, the dissatisfaction with this limit-taking step is one of the reasons why Scholze introduced the pro-etale site.

Denote by $\mathfrak{TR}$ to be $2$-category of essentially small triangulated categories, then the family 

$$D^b_c: \mathrm{Var}/k \longrightarrow \mathfrak{TR} \  \ X \longmapsto D^b_c(X)$$ defines a $2$-functor admitting a formalism of six operations $(f^*,f_*,f_!,f^!,\otimes,\underline{\mathrm{Hom}})$, e.g. proper + smooth base change theorems, purity, Poincare duality,...

Objects of $D^b_c(X)$ are called $\mathbb{Q}_l$-sheaves or $l$-adic sheaves. The tensor product admits a unit denoted $\mathbb{Q}_{l,X}$ corresponding to the "constant" $l$-adic sheaf. For a $l$-adic sheaf $\mathcal{F}$, we define the $i$-th $l$-adic cohomology by setting

$$H^i(X \otimes_k \overline{k},\mathcal{F} \otimes_k \overline{k}) = \mathrm{Hom}_{D^b_c(X)}(\mathbb{Q}_{l,X},p_*\mathcal{F}[n]).$$ if $p: X \longrightarrow \mathrm{Spec}(k)$ is the structural morphism. Similarly, 

$$H^i_c(X \otimes_k \overline{k},\mathcal{F} \otimes_k \overline{k}) = \mathrm{Hom}_{D^b_c(X)}(\mathbb{Q}_{l,X},p_!\mathcal{F}[n]).$$ There is a subcategory of this category called smooth $l$-adic sheaves. Instead of treating (smooth) $l$-adic sheaf as complexes, we follow a shorter path:

Định lý

Let $X/k$ be an algebraic variety and $\overline{x} \longrightarrow X$ be a geometric point, then there is an equivalent of categories
$$\left \{\text{etale} \ \overline{\mathbb{Q}}_l-\text{sheaves} \right \} \overset{\sim}{\longrightarrow} \left \{\text{continuous rep. of} \ \pi_1(X,\overline{x}) \ \text{of} \ \overline{\mathbb{Q}}_l-\text{vector spaces} \right \}.$$ and moreover, smooth $l$-adic sheaves correspond to those representations which are of finite dimension. The equivalence is given by sending each etale $\overline{\mathbb{Q}}_l$ to its fiber over $\overline{x}$
.

Frobenii

 

During the study of this subject, I found out that the definitions of the Frobenius morphism and their traces are ambiguous, precisely, there are several definitions of Frobenii, and the question is: which one is the right one that is used in our calculations and how are they related to others? I'll discuss few approaches to this definition, the explicit one and the abstract one. We still fix $k = \mathbb{F}_q$ and $k_n= \mathbb{F}_{q^n}$, the unique finite extension of degree $n$ of $k$.

 

Explicit definition

 

Although there are some different notions, they all arise from a single one, namely, the absolute Frobenius.

Định nghĩa

Let $A/k$ be an algebra, the Frobenius endomorphism $\mathrm{Frob}:A \longrightarrow A$ is simply the ring homomorphism $a \longmapsto a^p$. This construction is carried to schemes as it should be: if $X/k$ is a scheme, then the absolute Frobenius endomorphism $\mathrm{Frob}: X \longrightarrow X$ is a homeomorphism at the level of underlying topological spaces but on the structure sheaf is $f \longmapsto f^p$. Alternatively, it is defined locally by the Frobeninus endomorphism of affine pieces.

Caution. The Frobenius endomorphism is not an isomorphism in general. 

Bổ đề

The Frobeinus endomorphism $\mathrm{Frob}: X \longrightarrow X$ is finite of degree $q^{\dim(X)}$.

Proof. I strongly recommend you to prove this result with $X = \mathrm{Spec}(k[x_1,...,x_n])$ and move to the general case. Otherwise you can look at Milne's note.

Bổ đề

If $f: X \longrightarrow Y$ is a morphism of $k$-schemes, then $\mathrm{Frob}_Y \circ f = f  \circ \mathrm{Frob}_X$. In other words, the Frobenius construction is natural

Proof. Obvious.

 

Much much more stronger is the following.

Định lý

If $f: U \longrightarrow X$ is an etale morphism of $k$-varieties, then the diagarm \begin{xy}
\xymatrix {
 U \ar[r]^{\mathrm{Frob}} \ar[d]_{f} & U \ar[d]_f \\
                             X \ar[r]_{\mathrm{Frob}}  &  X
}
\end{xy}

is cartesian.

Proof. By the previous lemma, there exists a canonical morphism, which is called the relative Frobenius morphism $\mathrm{Frob}_{X/U}: U \longrightarrow X \times_X U$. Note that since $f$ is etale, its base change, the projection onto the first factor $pr_X: X \times_X U \longrightarrow X$ is also etale. But $pr_X \circ \mathrm{Frob}_{X/U} = f$ so that $\mathrm{Frob}_{X/U}$ is etale. The absolute Frobenii are universally bijective (as noted in the definition), this forces $\mathrm{Frob}_{X/U}$ to be universally bijective. A morphism which is universally bijective and etale must be an isomorphism due to StackProject.

We can consider others Frobenii

  • The relative Frobenius $\mathrm{Frob}_r = \mathrm{Frob}_X \times \mathrm{id}_{\overline{k}}: X \otimes_k \overline{k} \longrightarrow X \otimes_k \overline{k}$. This one is a special case of the one in the proof above.
  • The arithmetic Frobenius $\mathrm{Frob}_a = \mathrm{id}_X \times \mathrm{Frob}_{\overline{k}}:X \otimes_k \overline{k} \longrightarrow X \otimes_k \overline{k}$.
  • The geometric Frobenius $\mathrm{Frob}_g = \mathrm{id}_X \times \mathrm{Frob}_{\overline{k}}^{-1}:X \otimes_k \overline{k} \longrightarrow X \otimes_k \overline{k}$.

The relative and arithmetic are automorphisms while the geometric and the absolute are not.

Bổ đề

Given a variety $X/k$, then we have $X(k_r)  = \overline{X}^{\mathrm{Frob}_r^n}$ where the relative Frobenius acts on $\overline{X}$ on the first factor. In other words, the set of $k_n$-points of $X$ is the set of closed points of $\overline{X}$ which is fixed under the $r$-iteration of the Frobenius.

Proof. Check on affine pieces.  

 

The next point is to formulate the Grothendieck trace formula, which (I think people may not drop this point at the first reading) is our main tool of computation. We have to find a natural way to define an endormophism, denoted $\mathrm{Frob}^*$

$$\mathrm{Frob}^*: H^i_c(X \otimes_k \overline{k}, \mathcal{F} \otimes_k \overline{k}) \longrightarrow H^i_c(X \otimes_k \overline{k}, \mathcal{F} \otimes_k \overline{k})$$ for every $l$-adic sheaf $\mathcal{F}$ and its pullback $\mathcal{F} \otimes_k \overline{k}$ to $X \otimes_k \overline{k}$.

 

Think topologically and remember how people thought about sheaves in the beginning days. Well, sheaves are actually sheaves of sections of etale spaces (by this, I really mean we have some equivalence of categories), the same thing happens here: for every $l$-adic sheaf $\mathcal{F}$ on $X$, there exists an algebraic space (which plays the role of an etale space in the topological world) $[\mathcal{F}]$ together with an etale morphism $f: [\mathcal{F}] \longrightarrow X$ such that $\mathcal{F}$ becomes the sheaf of sections of this morphism. As a consequence, we may identify $\mathcal{F}$ with $[\mathcal{F}]$. By base change, we obtain an etale morphism $f \otimes_k \overline{k}: [\mathcal{F}] \otimes_k \overline{k} \longrightarrow X \otimes_k \overline{k}$ and in a similar to the theorem above, the diagram

\begin{xy}
\xymatrix {
\overline{\mathcal{F}} = \mathcal{F} \otimes_k \overline{k} \ar[r]^{\mathrm{Frob}} \ar[d]_{f} & \overline{\mathcal{F}} \ar[d]_f \\
                             X \ar[r]_{\mathrm{Frob}}  &  X
}
\end{xy}

is cartesian. That being said, $\overline{\mathcal{F}} \simeq  \mathrm{Frob}^*\overline{\mathcal{F}}$ where by $\mathrm{Frob}^*$ I really mean pullback of a sheaf. This isomorphism yields two important facts:

  • The composition $$\mathrm{Frob}^*: H_c^i(X \otimes_k \overline{k}, \overline{\mathcal{F}}) \longrightarrow H_c^i(X \otimes_k \overline{k},\mathrm{Frob}^*\overline{\mathcal{F}}) \simeq H_c^i(X \otimes_k \overline{k}, \overline{\mathcal{F}})$$ is the one that we are seeking, where the first morphism is the natural morphism. 
  • If $x \in X \otimes_k \overline{k}$ is fixed by the $n$-iteration of the absolute Frobenius, then taking stalks induces an isomorphism $\mathrm{Frob}_x^{*n}: \mathcal{F}_x \overset{\sim}{\longrightarrow} \mathcal{F}_x$.

Định lý

(Grothendieck-Lefschetz trace formula). With these data, we have

$$\sum_{x \in X(k_n)}\mathrm{Trace}(\mathrm{Frob}_x^{*n},\mathcal{F}_x) = \sum_i (-1)^i\mathrm{Trace}(\mathrm{Frob}^{*n},H^i_c(X \otimes_k \overline{k},\overline{\mathcal{F}})).$$ In particular, 

$$\sum_{x \in X(k)}\mathrm{Trace}(\mathrm{Frob}_x^{*},\mathcal{F}_x) = \sum_i (-1)^i\mathrm{Trace}(\mathrm{Frob}^{*},H^i_c(X \otimes_k \overline{k},\overline{\mathcal{F}})).$$

If we set

$$\mathrm{Trace}_{\mathcal{F}}(x) =  \mathrm{Trace}(\mathrm{Frob}_x^{*},\mathcal{F}_x)$$ for each $x \in X(k)$, then this constitues a function

$$\mathrm{Trace}: X(k) \longrightarrow \overline{\mathbb{Q}}_l = \mathbb{C}$$ with the following properties

  • For any $x \in X(k)$ and $\mathcal{F},\mathcal{G} \in D^b_c(X)$ $$\mathrm{Trace}_{\mathcal{F}}(x)\mathrm{Trace}_{\mathcal{G}}(x) = \mathrm{Trace}_{\mathcal{F} \otimes \mathcal{G}}(x).$$
  • For any morphism of $k$-varieties $f: X \longrightarrow Y$ $$\mathrm{Trace}_{f^*\mathcal{F}}(x)  = \mathrm{Trace}_{\mathcal{F}}(f(x)).$$
  • For any $y \in Y(k)$ then $$\sum_{x \in X_y(k)} \mathrm{Trace}_{\mathcal{F}}(x) = \mathrm{Trace}_{f_!\mathcal{F}}(y).$$

Katz's point of view

 

Given a connected variety $X/k$ and for any point $x: k_r \longrightarrow X$, we get an induced group homomorphism

$$x_*: \pi_1(k_r,\overline{k}) \longrightarrow \pi_1(X,\overline{k})$$ by the functoriality of the etale fundamental group functor. Since $\pi_1(k_r)$ contains the Frobenius automorphism $\mathrm{Frob}_{k_r}: \overline{k} \longrightarrow \overline{k}, a \mapsto a^{\left| k_r \right|}$, we can consider its image via $x_*$ and set

$$x_*(\mathrm{Frob}_{k_r}) = \mathrm{Frob}_{k_r,x}.$$ Now given a smooth $l$-adic sheaf, i.e. a finitely dimensional representation 

$$\mathcal{F}: \pi_1(X) \longrightarrow \mathrm{GL}(r,\overline{\mathbb{Q}}_l),$$ and a $k$-point $x: k \longrightarrow X$ then it makes sense to consider the trace of the automorphism $\mathrm{Trace}(\mathcal{F}(\mathrm{Frob}_{k,x}))$ which is nothing but $\mathrm{Trace}_{\mathcal{F}}(x)$ considered before. However, I do not have any reference for this.

 

Artin-Schreier theory

 

Now with the formalism of $l$-adic cohomology in hands, we are ready to translate functions to cohomology. We introduce things called Artin-Schreier sheaf on $\mathbb{A}^1$. Here again, $k = \mathbb{F}_q, q = p^m$.

 

The Artin-Schreier sheaf is the morphism 

$$\begin{align*} L: \mathbb{A}^1_k &  \longrightarrow \mathbb{A}^1_k \\ t & \longmapsto t - t^q  \end{align*}$$ (here $t$ denotes the canonical coordinate on $\mathbb{A}^1$) is an etale covering whose whose Galois group is $\mathbb{F}_q$, i.e. $\mathrm{Aut}_{\mathbb{A}^1}(\mathbb{A}^1) = k$ and generated by $x \longmapsto x+1$.  Note that the fundamental group $\pi_1(\mathbb{A}^1)$ contains $\mathrm{Aut}_{\mathbb{A}^1}(\mathbb{A}^1)$ as an element of the projective system, so there is a canonical projection 

$$\pi_1(\mathbb{A}_k^1) \longrightarrow k.$$ Given any additive character $\psi: k  \longrightarrow \overline{\mathbb{Q}}_l^{\times}$, one then has a local system of rank $1$ from the composition 

$$\mathcal{L}_{\psi}: \pi_1(\mathbb{A}_k^1) \longrightarrow k \overset{\psi}{\longrightarrow} \overline{\mathbb{Q}}_l^{\times}$$ denoted $\mathcal{L}_{\psi}$, called the Artin-Schreier sheaf of $\psi$. The important fact is that

Bổ đề

$\mathrm{Trace}_{\mathcal{L}_{\psi}}(x)  = \psi(x)$ for any $x \in k = \mathbb{A}^1_k(k)$.

Proof. Since $\mathrm{Trace}_{\mathcal{L}_{\psi}}(x) = \mathrm{Trace}(\psi(\mathcal{L}_{\psi}(\mathrm{Frob}_{k,x})))$, we need to know what is $\mathcal{L}_{\psi}(\mathrm{Frob}_{k,x})$; in other words, where the Frobenius goes. We are done if we can prove that $ \mathcal{L}_{\psi}(\mathrm{Frob}_{k,x})=x$. To be continued.

 

Now we come to the main point, namely, the cohomological expression of Kloosterman sums. For any value $a$, we consider the hyperbol

$$X_a = \left \{(x,y) \in \mathbb{A}^2_k \mid xy = a \right \}$$

and consider the morphism $h_a: X_a \longrightarrow \mathbb{A}^1, (x,y) \mapsto x+y$. By theorem 5 and lemma 4, we have

$$\mathrm{Kl}(a,\psi) = \sum_{i=0}^2 (-1)^i \mathrm{Trace}(\mathrm{Frob}^*, H^i_c(X_a \otimes_k \overline{k}, h_a^*\mathcal{L}_{\psi} \otimes_k \overline{k})).$$ Note that $X_a$ is non-compact curve, so $H^0(X_a) = 0$ and by Poincare duality $H^2(X_a)=0$, therefore 

$$\mathrm{Kl}(a,\psi) = - \mathrm{Trace}(\mathrm{Frob}^*, H^1_c(X_a \otimes_k \overline{k}, h_a^*\mathcal{L}_{\psi} \otimes_k \overline{k})).$$ Note that, $$\dim \ H^1_c(X_a \otimes_k \overline{k}, h_a^*\mathcal{L}_{\psi} \otimes_k \overline{k}) = -\chi_c(X_a, h^*\mathcal{L}_{\psi})$$ the Euler characteristic with compact support. We'd like to compute this dimension first. Thanks to the Grothendieck-Ogg-Shafarevich theorem, we can compute this characteristic as follows.

Định lý

(Grothendieck-Ogg-Shafarevich). Let $\overline{X}$ be a proper smooth curve over $k$ and $X$ an open subset of $\overline{X}$ and $\mathcal{F}$ a local system on $X$. Then

$$\chi_c(X \otimes_k \overline{k},\mathcal{F}) = \chi_c(X \otimes_k \overline{k})\mathrm{rank}(\mathcal{F})  - \sum_{x \in \overline{X}\setminus X} \mathrm{Sw}_x(\mathcal{F})$$ where $\mathrm{Sw}$ are Swan conductors.

The Swan conductors are hard to be defined but in practice, one just needs to know its formal properties:

  • $\mathrm{Sw}_x(\mathcal{F})$ depends only on its restriction to the punctured formal disc $\hat{X}_x^{\bullet}$. 
  • $\mathrm{Sw}_x(\mathcal{F})=0$ when the restriction of $\mathcal{F}$ to $\hat{X}_x^{\bullet}$ is tame.
  • If $\mathcal{G}$ is a tame local system at $\hat{X}_x^{\times}$, then $\mathrm{Sw}_x(\mathcal{F} \otimes \mathcal{G}) = \mathrm{Sw}_x(\mathcal{F})\mathrm{rank}(\mathcal{G}).$

Here are some computations.

Ví dụ

If $X = \mathbb{A}^1$ and $\mathcal{F} = \mathcal{L}_{\psi}$, then by an elementary argument, we see that

$$\mathrm{Trace}(\mathrm{Frob}^*,H_c^1(\mathbb{A}^1,\mathcal{L}_{\psi})) = \sum_{x \in k} \psi(x) = 0$$ and hence $\chi_c(\mathbb{A}^1,\mathcal{L}_{\psi})=0$. By Grothendieck-Ogg-Shafarevich formula, we see that

$$0 = \chi_c(\mathbb{A}^1)\mathrm{rank}(\mathcal{L}_{\psi}) - \mathrm{Sw}_{\infty}(\mathcal{L}_{\psi})$$ and from this we deduce that $\mathrm{Sw}_{\infty}(\mathcal{L}_{\psi}) = 1$.

Ví dụ

For each $a \neq 0$, we see that $X_a \simeq \mathbb{G}_m$ so by Grothendieck-Ogg-Shafarevich formula,

$$\chi_c(X_a,h_a^*\mathcal{L}_{\psi}) = \chi_c(X_a) - \mathrm{Sw}_0(h_a^*\mathcal{L}_{\psi}) - \mathrm{Sw}_{\infty}(h_a^*\mathcal{L}_{\psi}) = - \mathrm{Sw}_0(h_a^*\mathcal{L}_{\psi}) - \mathrm{Sw}_{\infty}(h_a^*\mathcal{L}_{\psi}).$$ By the properties of Swan conductors

$$\begin{align*} \mathrm{Sw}_0(h_a^*\mathcal{L}_{\psi}) & = \mathrm{Sw}_0(x^*\mathcal{L}_{\psi} \otimes y^*\mathcal{L}_{\psi}) \\ & = \mathrm{Sw}_0(x^*\mathcal{L}_{\psi})\mathrm{rank}(y^*\mathcal{L}_{\psi})  = 1 \end{align*}$$ since $y^*\mathcal{L}_{\psi}$ is even unramified (not just tame) and by the previous example. By symmetry, $\mathrm{Sw}_{\infty}(h_a^*\mathcal{L}_{\psi}) = 1$ and finally this all implies that $\chi_c(X_a,h_a^*\mathcal{L}_{\psi})=2$.

 

Weight theory of Deligne

 

We fix once for all an identification $\iota: \overline{\mathbb{Q}}_l  \overset{\sim}{\longrightarrow} \mathbb{C}$ so that we can speak of an absolute on $\overline{\mathbb{Q}}_l$. Given a smooth $\mathbb{Q}_l$-sheaf $\mathcal{F}$ on an algebraic variety $X/k$, $k_n/k$ a finite extension of $k$.

$$\mathcal{F}: \pi_1(X) \longrightarrow \mathrm{GL}(r,\mathbb{C})$$ and a point $x \in X(k_n)$, then we say that

  • $\mathcal{F}$ is pure of weight $w$ if for each $n$, every eigenvalue of $\mathrm{Frob}^{*n}_x$ has eigenvalues with absolute values $\left|k \right|^{w/2}$.
  • $\mathcal{F}$ is mixed of weight $\geq w$ if if for each $n$, every eigenvalue of $\mathrm{Frob}^{*n}_x$ has eigenvalues with absolute values $\geq \left|k \right|^{w/2}$.
  • $\mathcal{F}$ is mixed of weight $\leq w$ if if for each $n$, every eigenvalue of $\mathrm{Frob}^{*n}_x$ has eigenvalues with absolute values $\leq \left|k \right|^{w/2}$.

We call the celebrated theorem due to Deligne, originally known as Weil conjectures.

Định lý

(Deligne) Let $X/k$ be a variety and $\mathcal{F}$ is a $l$-adic sheaf mixed of weight $\leq 0$, then every eigenvalue of 

$$\mathrm{Frob}^*:H_c^i(X \otimes_k \overline{k},  \mathcal{F} \otimes_k \overline{k}) \longrightarrow H_c^i(X \otimes_k \overline{k},  \mathcal{F} \otimes_k \overline{k})$$ has absolute values $\leq \left |k \right|^{i/2}$

In Weil II, Deligne proved something much stronger where one replaces $U \longrightarrow \mathrm{Spec}(k)$ by a morphism $f: X \longrightarrow Y$, then $R^if_!\mathcal{F}$ is mixed of weight $\leq w +i$  whenever $\mathcal{F}$ is mixed of weight $\leq w$. However, the Target theorem is enough to deduce the last part of the Weil conjectures and estimates of Kloosterman sums. 

 

From Deligne's weight theorems, the computation $\dim \ H^1_c(X_a \otimes_k \overline{k} ,h_a^*\mathcal{L}_{\psi} \otimes_k \overline{k}) = 2$, and 

$$\mathrm{Kl}(a,\psi) = - \mathrm{Trace}(\mathrm{Frob}^*, H^1_c(X_a \otimes_k \overline{k}, h_a^*\mathcal{L}_{\psi} \otimes_k \overline{k})).$$ we see that

$$\left | \mathrm{Kl}(a,\psi) \right| \leq 2p^{1/2}.$$

More generally, if we define a generalized Kloosterman sum as 

$$\mathrm{Kl}_m(a,\psi) = \sum_{x_1\cdots x_m = a, x_i \in k}\psi(x_1 + \cdots + x_m)$$ then we have an estimate $\left |\mathrm{Kl}_m(a,\psi) \right | \leq mp^{(m-1)/2}$.