Đến nội dung


Creammy Mami

Đăng ký: 04-09-2013
Offline Đăng nhập: Riêng tư
****-

Chủ đề của tôi gửi

$\dfrac{1}{x^2}+\dfrac{1}{x^2}=...

28-10-2013 - 19:29

Cho $(P):y=x^2-(3m-5)x=3m+10$

Tìm $m$ để $(P)$ cắt $Ox$ tại $2$ điểm phân biệt $A(x_1,y_1), B(x_2,y_2)$ sao cho $\dfrac{1}{x^2}+\dfrac{1}{x^2}=\dfrac{34}{225}$. Với $m$ đó tìm $C \in Oy$ sao cho $\triangle ABC$ vuông tại $A$


$(P):y=x^2-(m+1)x+5m-8$

28-10-2013 - 19:22

Cho $(P):y=x^2-(m+1)x+5m-8$

Tìm $M$ để $(P)$ cắt $Ox$ tại $A,B$ và cắt $Oy$ tại $C$ sao cho $S_{\triangle ABC}=1$.


$x^2y^4+2(x^2+1)y^2+4xy+x^2-4xy^3\geq 0$

26-10-2013 - 19:48

1) Chứng minh rằng: $\forall x,y \in \mathbb{R}$

$$x^2y^4+2(x^2+1)y^2+4xy+x^2-4xy^3\geq 0$$

2) Chứng minh rằng: $\forall x,y \in \mathbb{R}$

$$19x^2+54y^2+16z^2-16xz-24yz+36xy\geq 0$$

3) Cho $a,b,c$là $3$ cạnh của tam giác

Chứng minh rằng  $\forall x,y \in \mathbb{R}$, $(ax+by)(x+y)\geq cxy$

4) Chứng minh rằng: $\forall x,y \in \mathbb{R}$, $(x+y)^2-xy+1\geq (x+y)\sqrt{3}$

5) Cho $t<z<y$, chứng minh rằng $\forall x,y \in \mathbb{R}$

$$(x+y+z+t)^2>8(xz+yt)$$

6) Cho $a,b,c$ là $3$ cạnh của tam giác

Chứng minh rằng: $pa^2+pb^2\geq pqc^2$, $p+q=1$

7) Cho $a^3>36$ và $abc=1$. Chứng minh rằng: $\frac{a^3}{3}+b^2+c^2>ab+bc+ca$


$\sqrt[4]{\frac{1}{2}-\cos 2x}+\...

26-10-2013 - 19:25

1) $81^{\sin^2x}+81^{\cos^2x}=30$

2) $\sqrt[3]{\sin^2x}+\sqrt[3]{\cos^2x}=\sqrt[3]{4}$

3) $\sin x+\sqrt{2-\sin^2x}+\sin x\sqrt{2-\sin^2x}=3$

4) $\sqrt[4]{10+8\sin^2x}-\sqrt[4]{8\cos^2x-1}=1$

5) $\sqrt[4]{\frac{1}{2}-\cos 2x}+\sqrt[4]{\frac{1}{2}+\cos2x}=2$


$\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}...

26-10-2013 - 19:18

1) $\sqrt[3]{7+tgx}+\sqrt[3]{2-tgx}=3$

2) $\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x$