Đến nội dung


congchuasaobang

Đăng ký: 11-01-2014
Offline Đăng nhập: 04-05-2015 - 20:05
*****

Bài viết của tôi gửi

Trong chủ đề: hợp số

08-11-2014 - 23:59

Bạn tách hằng đẳng thức ra. Đó là hợp số vì lúc đó nó có hai ước số khác 1 và khác chính nó nữa.

 

$ 15657 + 1000 = 16657 $

$ 15657 - 1000 = 14657 $

không phải, ý mình là từ đề bài làm sao để biến đổi thành $15657^{2}-1000^{2}$ í ??????


Trong chủ đề: hợp số

08-11-2014 - 23:30

Câu 1: 

$ 2 ^{10} + 5^{12} = 15657^2 - 1000^2$

Vì vậy nó là hợp số

bạn làm kĩ hơn được không??? mình không hiều


Trong chủ đề: Chứng minh định lí "Hình thang có 2 đường chéo bằng nhau là hình than...

21-07-2014 - 16:10

 

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang $ABCD (AB // CD)$ có $AC = BD$. Qua $B$ kẻ đường thẳng song song với $AC$, cắt đường thẳng $DC$ tại $E$. Chứng minh rằng: 
 
a) $BDE$ là tam giác cân. 
 
b) $\triangle ACD = \triangle BDC.$
 
c) Hình thang $ABCD$ là hình thang cân.

 

a, Ta có: BE song song AC ( theo bài ra)

               AB song song CE ( E thuộc CD)

       nên ABEC là hình bình hành, do đó AC=BE

               mà AC = BD

         nên BD=BE do đó BDE là tam giác cân

b, Ta có AC song song BE nên $\widehat{BEC}=\widehat{ACD}$

        mà $\widehat{BED}=\widehat{BDC}$ ( BDE là tam giác cân )

                       do đó  $\widehat{ACD}=\widehat{BDC}$

      Xét tg ACD và tg BDC có : $\widehat{ACD}=\widehat{BDC}$

                                                AC=BD( theo gt )

                                                BC là cạnh chung

        nên tg ACD =tg BDC ( c-g-c)

c, Theo chứng minh câu b, ta có: tg ACD= tg BDC

              do đó $\widehat{ADC}=\widehat{BCD}$

        Vậy ABCD là hình thang cân


Trong chủ đề: Đề thi toán(chuyên) tuyển sinh lớp 10 THPT chuyên Quốc Học 2014-2015

20-06-2014 - 19:01

Câu 1: Đặt ẩn $\frac{1}{x-1}=a$. $\frac{1}{y-2}=b$, $\frac{1}{z-3}=c$     với x khác 1, y khác 2, z khác 3

              Ta được hệ mới a+b+c=1

                                        $a^{2}-2bc=-1$

            Được (a,b,c)=(-1;1;1) nên (x.y.z)=(0;3;4)

 

Câu 2: Ta có $a^{2}(b+c)+b^2(c+a)+c^2(b+a)+2abc=0$

               hay (a+b)(b+c)(c+a)=0 thay các trường hợp vào phương trình thứ hai thì tương ứng với các trường hợp được c=1; a=1; b=1.  Thay lần lượt vào biểu thức cần cm thì ra


Trong chủ đề: Cho các số dương a,b,c biết: $\frac{a}{1+a}+\frac{b}{1+b}+...

19-06-2014 - 20:48

mọi người giúp bài này nữa luôn ạ 

   Cho 3 số thực dương a,b,c Chứng minh:

a, $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}$

b, $\frac{a}{bc(c+a)}+\frac{b}{ca(a+b)}+\frac{c}{ab(b+c)}\geq \frac{27}{2(a+b+c)}$