Đến nội dung

Chris yang

Chris yang

Đăng ký: 26-03-2014
Offline Đăng nhập: Riêng tư
****-

Trong chủ đề: $\int\frac{dx}{2^{x}+1}$

20-12-2016 - 22:57

Tìm A = $\int\frac{dx}{2^{x}+1}$

Đặt $t=2^x+1$ thì $dt=\ln 2 (t-1)dx$

$\Rightarrow A=\frac{1}{\ln 2}\int \frac{dt}{t(t-1)}=\frac{1}{\ln 2}\int \left ( \frac{1}{t-1}-\frac{1}{t} \right )dt=\frac{1}{\ln 2}(\ln|t-1|-\ln|t|)+c$


Trong chủ đề: Cho $k$ là số nguyên dương. Chứng minh rằng tồn tại các số nguy...

21-10-2016 - 16:39

Cho $k$ là số nguyên dương. Chứng minh rằng tồn tại các số nguyên $x, y$ không số nào chia hết cho 3 sao cho $x^{2}+3y^{2}=3^{k}.$

$x^2=3^k-3y^2$ chắc chắn chia hết cho $3$ rồi còn gì @@


Trong chủ đề: Tìm tất cả các số nguyên dương $(q, r, p),$ với $p$ l...

16-10-2016 - 22:02

Tìm tất cả các số nguyên dương $(q, r, p),$ với $p$ là số nguyên tố thỏa mãn $2^{q}+r^{2}=2p.$

Dễ thấy $p$ lẻ

Từ PT suy ra $r$ chẵn $\Rightarrow 4|r^2$. Thấy $2^{q-1}=p-\frac{r^2}{2}$ lẻ do $p$ lẻ nên $q-1=0\Rightarrow q=1$

Khi đó $r^2=2(p-1)\Rightarrow p-1=2^{2k+1}x^2$ với $k,x\in\mathbb{N}$ hay $p$ có dạng $2^{2k+1}x^2+1$ ( Theo nguyên lí Dirichlet về sự tồn tại vô số số nguyên tố dạng $ak+b$ thì $p$ có vô số giá trị thỏa mãn $3,19,73,163,883....$)

 Vậy $(p,q,r)=(2^{2k+1}x^2+1,1,2^{k+1}x)$ với $k,x\in\mathbb{N}$


Trong chủ đề: Cho $S(n)$ là tổng các chữ số của $n$. Tìm $n...

16-10-2016 - 16:49

Tính chất cơ bản: Ước nhỏ nhất (khác $1$) của một số $a$ là một số nguyên dương không vượt quá $\sqrt{a}$. 

Từ đây, suy ra nếu $S(n)$ là ước nguyên dương lớn nhất khác $n$ thì $S^2(n)\geq n$ Suy ra nếu $n$ có $t$ chữ số, khi đó điều kiện cần là $(9t)^2\geq 10^{t-1}$. Khi đó dễ CM $t<5$ bằng quy nạp.

+) Nếu $t=4$, $n=\overline{a_1a_2a_3a_4}$, $n\leq 36^2=1296$ nên $a_1=1\Rightarrow n\leq (1+9+9+9)^2=784$ ( vô lý)

+) Nếu $t=1$ thì hiển nhiên vô lý.

+) Nếu $t=2$ Đặt $n=\overline{a_1a_2}$. Cần có $10a_1+a_2=k(a_1+a_2)$, trong đó $k$ là số nguyên tố nhỏ hơn $\sqrt{99}$, tức là $k\leq 9$

Thay $k=2,3,5,7$ vào $\rightarrow a_1,a_2...$

+) Nếu $t=3$ có $\overline{a_1a_2a_3}\leq 729$ nên $a_1\leq 7\rightarrow n\leq (6+9+9)^2=576\Rightarrow a_1\leq 5\rightarrow n\leq 22^2=484$ nên $a_1\leq 4$

Giờ chỉ cần thử các giá trị $a_1=1,2,3,4$ và tiếp tục làm như TH $t=2$ nhưng với biến $a_2,a_3$ ta sẽ tìm được $n$ thỏa mãn.


Trong chủ đề: Tìm các số a,b sao cho $a^b=b^a$

16-10-2016 - 00:08

Tìm các số số tự nhiên $a,b$ sao cho $a^b=b^a$

Với $a=b\in\mathbb{N}$ thì bài toán luôn đúng. Xét $a\neq b$. Giả sử $a>b$.

Đặt $a=p_1^{m_1}p_2^{m_2}....p_k^{m_k}$ với $p_i\in\mathbb{P}$ và $m_i\in\mathbb{N}$. Từ đó kéo theo $b=p_1^{n_1}p_2^{n_2}....p_k^{n_k}$

Vì $a^b=b^a$ nên $\frac{a}{b}=\frac{m_i}{n_i}=\prod_{1}^{k}p_i^{m_i-n_i}>1$

Giả sử $p$ là ước nguyên tố lớn nhất của $a$ và $b$, hiển nhiên $\frac{m}{n}\geq p^{m-n}\Rightarrow m\geq np^{m-n}$

$\Rightarrow m-n\geq n(p^{m-n}-1)\geq p^{m-n}-1$ $(\star)$

Ta sẽ CM với $x\geq 1\in\mathbb{N}$, $p\in\mathbb{N}^*$ thì $p^x\geq (p-1)x+1$ $(1)$ bằng quy nạp. Giả sử điều này đúng với $x=t$, tức là $p^t\geq (p-1)t+1$, khi đó $p^{t+1}=p.p^t\geq p(p-1)t+p=(p-1)(t+1)+1+t(p-1)^2\geq (p-1)(t+1)+1$, tức là điều này đúng với cả $x=t+1$, do đó $(1)$ được CM. Dấu $=$ xảy ra khi $x=1$

 

Quay trở lại bài toán, với $m-n\geq 1$, ta có $p^{m-n}\geq (p-1)(m-n)+1$. Kết hợp với $(\star)$ suy ra $p=2$ thỏa mãn kéo theo. Dấu $=$ xảy ra khi $m-n=1$. Hơn nữa ta cũng thu được $\frac{m}{n}=2$ nên $m=2,n=1$, hay $(a,b)=(4,2)$

Vậy $a=b$ hoặc $(a,b)=(4,2)$ và các hoán vị