Lấy pt (1)-(2) ,(2)-(3),(3-1) $= > \left\{\begin{matrix} 2(x-y)(x^2+xy+y^2)=3x(z-y) & & \\ 2(y-z)(y^2+yz+z^2)=3y(x-z) & & \\ 2(z-x)(z^2+xz+x^2)=3z(y-x) & & \end{matrix}\right.$
Nhân theo vế
$= > 8(x-y)(y-z)(z-x)\prod (x^2+xy+y^2)=27xyz(x-y)(y-z)(z-x)$
Nếu trong 3 tích trên có ít nhất 1 cái = 0 thì x=y hoặ y=z hoặc z=x .Thay vào đê bài rồi giải pt là xong
Nếu không có tích nào = 0 thì $8(x^2+xy+y^2)(y^2+yz+z^2)(z^2+xz+x^2)=27xyz$
Đến đây Cosi ta CM đc VT>VP nên vo ly
Cosi the nao ha ban???