Lời giải của hanguyen445 sai vì bất đẳng thức $(*)$ không đúng. Bài này có thể chứng minh bằng Cauchy-Schwarz lúc trước có một bạn đã đăng lên diễn đàn và mình cũng có đăng một bài mạnh hơn của nó.
Còn link không anh ?
12-08-2017 - 22:51
Lời giải của hanguyen445 sai vì bất đẳng thức $(*)$ không đúng. Bài này có thể chứng minh bằng Cauchy-Schwarz lúc trước có một bạn đã đăng lên diễn đàn và mình cũng có đăng một bài mạnh hơn của nó.
Còn link không anh ?
13-07-2017 - 07:52
Giá trị lớn nhất là $\frac18,$ anh có lời giải nhưng không phải của anh nên không post. Nó là đề thi của Hàn Quốc 2012.
(Cười) Em chỉ nói là hi vọng thôi. Nếu anh có lời giải không BW quá thì post cho mọi người mở mang tầm mắt ạ.
Bất đẳng thức này không thể vận dụng bất cứ phương pháp cổ điển hay hiện đại nào để giải cả, vì nó sai. :v
Anh chỉ rõ hơn được không anh.
08-06-2017 - 18:10
$\sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}\leq \frac{3}{\sqrt{2}}\Leftrightarrow \sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\leq 3$$\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\leq \sqrt{\left [ 2\sum \left (a+b \right ) \right ]\left [ \sum \frac{2a}{(a+b)(c+a)} \right ]}=\sqrt{\frac{8(a+b+c)(ab+bc+ca)}{(a+b)(b+c)(c+a)}}\leq 3$ (C-S & AM-GM)
05-06-2017 - 18:24
Ừm hihi
05-06-2017 - 17:45
ĐHV PlayESPN
Mình là PlanBbyFESN bạn ơi
Community Forum Software by IP.Board
Licensed to: Diễn đàn Toán học