Đến nội dung

Gachdptrai12

Gachdptrai12

Đăng ký: 24-09-2015
Offline Đăng nhập: 14-03-2017 - 23:57
****-

Trong chủ đề: Tính giới hạn của tổng $S_{n}=\sum_{k=1}^...

16-01-2017 - 22:24

Đầu tiên, do $u_1=2017>0$ nên $u_2>0$, $u_3>0$, $\ldots$ $u_n>0\ \forall \ n \in \mathbb{N^*}$. Mặt khác ta có $\dfrac{u_{n+1}}{u_n}=\left(\sqrt{u_n}+1\right)^2>1$ (vì $u_n>0$), do đó $u_{n+1}>u_n \ \forall \ n \in \mathbb{N^*}$

Vậy ta có $2017<u_1<u_2<\ldots<u_n$ với mọi $n\geqslant 1$.

 

Giả sử $\left(u_n\right)$ bị chặn trên. Theo nguyên lý $Weierstrass$ thì $\left(u_n\right)$ có giới hạn hữu hạn $L\in \mathbb{R}$, $L>2017$. Chuyển hệ thức truy hồi của dãy qua giới hạn thì ta có ngay $L=0$, mâu thuẫn. Vậy $\left(u_n\right)$ không bị chặn trên, do đó $\lim_{n\to +\infty}=+\infty$.

 

Mặt khác ta có

\begin{align*} &\phantom{~\iff} \sqrt{u_{n+1}}=\sqrt{u_n}\left(\sqrt{u_n}+1\right) \ \forall \ n\in\mathbb{N^*} \\ &\iff \dfrac{1}{\sqrt{u_{n+1}}}=\dfrac{1}{\sqrt{u_n}\left(\sqrt{u_n}+1\right)} \ \forall \ n\in\mathbb{N^*}\\ &\iff \dfrac{1}{\sqrt{u_{n+1}}}=\dfrac{1}{\sqrt{u_n}}-\dfrac{1}{\sqrt{u_n}+1} \ \forall \ n\in\mathbb{N^*} \\ &\iff \dfrac{1}{\sqrt{u_n}+1}=\dfrac{1}{\sqrt{u_n}}-\dfrac{1}{\sqrt{u_{n+1}}} \ \forall \ n\in\mathbb{N^*}\end{align*}

 

Vậy ta có

\[S_n=\sum^n_{k=1}\dfrac{1}{\sqrt{u_k}+1}=\dfrac{1}{\sqrt{u_1}}-\dfrac{1}{\sqrt{u_{n+1}}}\]

 

 

Vì $\lim_{n\to +\infty} u_{n+1}=+\infty$ nên ta có ngay $\lim_{n\to +\infty} S_n=\dfrac{\sqrt{2017}}{2017}$.

thật ra bài này là $lim U_{n}=+\infty$ không cần phải dùng định lý $weierstrass$ mà hình như bạn dùng định lý này cũng bị sai nữa ấy$U_{n}$ tăng và bị chặn trên mới có giới hạn nha bạn 
Hoặc bạn chỉ cần giả sử dãy có bị chặn trên nhưng dãy không có giới hạn hữu hạn nên dãy tiến tới$+\infty$ cũng dc


Trong chủ đề: $\frac{x^2}{y}+\frac{y^2}...

06-01-2017 - 11:20

   C/m bổ đề 

bạn expand ra xong dùng AM-GM là xong thôi 


Trong chủ đề: $\frac{x^2}{y}+\frac{y^2}...

04-01-2017 - 22:41

cho $x,y,z$ là các số thực dương thỏa mãn $xy+yz+xz=1$ . CMR

$\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-2(x^2+y^2+z^2)\geq \sqrt{3}-2$

áp dụng bổ đề $\sum \frac{x^{2}}{y}\geq \frac{(x+y+z)(x^{2}+y^{2}+z^{2})}{xy+yz+zx}$

đổi biến pqr ta chỉ cần chứng minh bất đằng thức sau

$p^{3}-2p^{2}-2p-\sqrt{3}+6\geq 0$ hàm $f(p)$ đồng biến trên $ p \geq \sqrt{3}$ nên ta có đpcm


Trong chủ đề: Topic về bất đẳng thức

27-11-2016 - 20:56

Cho a,b,c là các số thực dương thỏa mãn: abc=1, chứng minh rằng:

$ab^2+bc^2+ca^2\ge ab+bc+ca$

Đổi biến $(a,b,c)->(\frac{a}{b},\frac{b}{c},\frac{c}{a})$ Bất đẳng thức trở thành

$\sum \frac{a^{2}}{bc}\geq \sum \frac{a}{c}\Leftrightarrow \sum a^{3}\geq \sum a^{2}b$ hiển nhiên là AM-GM


Trong chủ đề: Tìm số cách phát thỏa yêu cầu

22-11-2016 - 23:14

Thì mình giải bài toán cụ thể rồi tổng quát hóa lên chứ kiếm ở đâu ra  :D

em thấy có mấy bài anh tổng quát mà đâu ghi cách cụ thể -.-