Đến nội dung


nguyenbaohoang0208

Đăng ký: 22-07-2017
Offline Đăng nhập: Riêng tư
*****

Bài viết của tôi gửi

Trong chủ đề: ĐỀ THI KIỂM TRA ĐỘI TUYỂN KHTN LỚP 10 VÒNG 2 NĂM 2015

29-07-2018 - 11:10

Giải phương trình đặc trưng mặc dù vẫn ra nhưng xong biến đổi rắc rối hơn. Nên sử dụng dãy phụ $(b_n)$ thỏa mãn $b_n^2=a_n$

$b_1=1,b_2=2,b_3=5,b_{n+1}=3b_{n}-b_{n-1}$

Sau đó chứng minh quy nạp sẽ dẫn đến $b_n^2=a_n$

Anh cho em hỏi là làm sao tìm được dãy $b_{n+1}=3b_{n}-b_{n-1}$ này vậy ạ


Trong chủ đề: Một số Tài liệu về $\boxed{\text{Phương trình, h...

18-10-2017 - 21:58

http://www.luyenthit...inh-co-loi-giai

http://www.tuituhoc....abel/PT-BPT-HPT

 


Trong chủ đề: $\boxed{\text{TOPIC}}$ Ôn thi họ...

06-10-2017 - 23:06

       

                                 

post-168384-0-79618900-1506939906.jpg

 

 

Nguồn: Sưu tầm

Câu bđt

Ta có bđt $a^{3}+b^{3}\geq ab(a+b)$

$\Rightarrow 19b^{3}-a^{3}\leq 20b^{3}-ab(a+b)$

$\Rightarrow 19b^{3}-a^{3}\leq (ab+5b^{2}))(4b-a)$

tương tự cộng vế lại ta có ĐPCM


Trong chủ đề: $\boxed{\text{TOPIC}}$ Ôn thi họ...

24-09-2017 - 21:12

Đâu có nghiêm lắm đâu Tea Coffee

Theo như anh Minhnksc đã nói thì bài trên là bài bđt trong đềthi USATST $2001$ đã được đăng tại đây

Tiếp theo là những bài mới cho các bạn nhé

$\boxed{\text{Bài 16}} $(Mình chếtừ bài anh số$6$ Minhnksc đưa ra)

$a_{1},a_{2},...,a_{n}>0$ TM $\sum \frac{1}{a_{1}+1}=n-1$

Tìm Max $\prod a_{1}$ 

$\boxed{\text{Bài 17}}$ Cho $\left\{\begin{matrix}x,y,z> 0 & & \\ xy+yz+zx=1 & & \end{matrix}\right.$

Tim Min  Đặt P= $7x^{2}+45y^{2}+64z^{2}$

$\boxed{\text{Bài 18}}$ Cho $\left\{\begin{matrix} x,y,z >0 & & \\ x+y+z=1 & & \end{matrix}\right.$

CMR $\sum \frac{a}{1+bc}\geq \frac{9}{10}$

P/s : Dạo này mình bận quá , không có thời gian lên diễn đàn nhiều, nên làm cho TOPIC bị trì trệ như vậy , mong mọi người vẫn sẽ tiếp tục ủng hộ TOPIC , 

(kiểm tra liên miên)

$\boxed{\text{Bài 16}} $

 

Ta sẽ có $\frac{1}{a_{1}+1}=n-1-\sum_{2}^{n}\frac{1}{a_{2}+1}=\sum_{2}^{n}\frac{a_{2}}{a_{2}+1}\geq (n-1) \sqrt[n-1]{a_{2}a_{3}...a_{n}}$

Tương tự nhân lại ta sx tìm được Max là $(n-1)^{n}$

$\boxed{\text{Bài 17}}  $

Áp dụng bđt AM-GM ta có $4x^{2}+36y^{2} \geq 24xy$

                                           $ 3x^{2}+48y^{2}\geq 24xz$

                                           $ 9y^{2}+16z^{2}\geq 24yz$

-> $P\geq 24$

Dấu ''='' xảy ra $\leftrightarrow \sqrt{\frac{3}{2}}$ $y=\frac{\sqrt{6}}{6}, z=\frac{\sqrt{6}}{8}$

Bài 18 này chắc là dùng bất đẳng phụ ( pp tiếp tuyến thì phải)


Trong chủ đề: Cho a,b,c>0 CM $\sum a^{3}/ [a^3+(b+c)^3)] >...

25-08-2017 - 13:54

Sai ở chỗ (b+c)^2 >=  2(b^2 +c^2) ( ở mẫu số)

đâu có sai đâu bạn , chỉ sai ở phần cuối cùng là dưới mẫu số phải là 3 thôi ;)