Đến nội dung


MathGuy

Đăng ký: 20-09-2017
Offline Đăng nhập: 16-08-2018 - 05:59
-----

Bài viết của tôi gửi

Trong chủ đề: Tìm giá trị nhỏ nhất

15-08-2018 - 06:49

$A= \frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1007}{2xy} \geq \frac{x^2+y^2+2xy}{x^2+y^2}+\frac{x^2+y^2+2xy}{2xy}+2014=2016+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\geq 2018$
Dấu bằng xảy ra khi $x=y=\frac{1}{2}$


Trong chủ đề: Tìm giá trị nhỏ nhất

10-06-2018 - 11:22

Đây là đề Hà Nội 2018 - 2019 thi vào 10 mà, ....
Đáp án đây:http://tin.tuyensinh...-c29a39030.html


Trong chủ đề: tìm giá trị lớn nhất

08-06-2018 - 18:10

giá trị lớn nhất mà bạn

Gáy sớm quá sry bạn :)) 


Trong chủ đề: tìm giá trị lớn nhất

08-06-2018 - 10:16

Sử Dụng AM-GM thôi:
$\frac{x^2+1}{y^2+1}+\frac{y^2+1}{z^2+1}+\frac{z^2+1}{x^2+1}\geq 3\sqrt{\frac{x^2+1}{y^2+1}.\frac{y^2+1}{z^2+1}.\frac{z^2+1}{x^2+1}}=3$
Dấu bằng xảy ra khi: $x=y=z=\frac{1}{3}$ 


Trong chủ đề: CMR $\frac{x^2}{y-2} + \frac{y^2...

07-06-2018 - 10:48

Không nha bạn

Dùng AM-GM có :

$\frac{x^2}{y-2}+4(y-2) \geq 4x$ 

$\frac{y^2}{x-2}+4(y-2) \geq 4y$

Cộng lại có đpcm

Còn 1 cách khác ( Bonus):
Dùng AM-GM:
$\frac{x^2}{y-2}+\frac{y^2}{x-2}\geq 2\sqrt{\frac{x^2}{x-2}\frac{y^2}{x-2}}$
Ta có BĐT sau: $\frac{x^2}{x-2}\geq 8$ tương tự như $\frac{y^2}{y-2}\geq 8$
BĐT tự chứng minh theo cách quy đồng
=> $\frac{x^2}{y-2}+\frac{y^2}{x-2}\geq 2\sqrt{\frac{x^2}{x-2}\frac{y^2}{x-2}}\geq 2.8=16$
Dấu bằng xảy ra khi x=y=4