Đến nội dung


nmlinh16

Đăng ký: 18-03-2018
Offline Đăng nhập: Hôm qua, 23:53
***--

Bài viết của tôi gửi

Trong chủ đề: Chứng minh rằng nếu một số nguyên dương m chia hết cho bình phương của mộ...

20-08-2021 - 03:50



Phần tử x ≠ 0 của một vành R được gọi là lũy linh nếu xn = 0 với một số nguyên dương n nào đó. Chứng minh rằng nếu một số nguyên dương m chia hết cho bình phương của một số nguyên lớn hơn 1 thì vành Z/m chứa một phần tử lũy linh

 

Theo giả thiết, ta có thể viết $m = a^2 b$, với $a, b$ là các số nguyên dương, $a > 1$. Xét lớp đồng dư $[ab]$ trong vành $\mathbb{Z}/m$. Ta có $[ab] \neq [0]$ vì $0 < ab < m$. Mặt khác, $[ab]^2 = [a^2b^2] = [mb] = [m][b] = [0]$.


Trong chủ đề: Giới thiệu về bó

26-05-2021 - 18:48

8. Bó flasque

 

Cho $X$ là một không gian tô-pô. Một bó $\mathscr{F}$ trên $X$ được gọi là flasque (hoặc flabby) (nhũn?) nếu các đồng cấu hạn chế của nó là các toàn cấu. Dễ thấy điều này tương đương với việc mọi lớp cắt của $\mathscr{F}$ đều là hạn chế của một lớp cắt toàn cục.

 

Mệnh đề. Cho $0 \to \mathscr{F} \xrightarrow{\phi} \mathscr{G} \xrightarrow{\psi} \mathscr{H} \to 0$ là một dãy khớp các bó trên $X$, trong đó $\mathscr{F}$ là flasque. Thế thì dãy trên cũng khớp trong phạm trù các tiền bó

Chứng minh

Đây là một định lý trong ZFC. Cho $U$ là một tập mở, ta cần chứng minh rằng dãy $0 \to \mathscr{F}(U) \xrightarrow{\phi(U)} \mathscr{G}(U) \xrightarrow{\psi(U)} \mathscr{H}(U) \to 0$ khớp. Tính khớp trái đã được đảm bảo bởi hàm tử $\Gamma(U,-)$ nên ta chỉ cần chứng minh rằng $\psi(U)$ là một toàn cấu.

Cố định $t \in \mathscr{H}(U)$. Xét tập hợp $S$ các bộ $(s,V)$ với $V \subseteq U$ là một tập mở và $s \in \mathscr{G}(V)$ sao cho $\psi(s)| = t|_V$. Ta có thể giả sử rằng $U$ khác rỗng. Thế thì tập hợp $S$ khác rỗng vì $\psi$ cảm sinh toàn cấu trên từng thớ. Xét quan hệ thứ tự $\le$ trên $S$ sao cho $(s,V) \le (s',V')$ khi và chỉ khi $V \subseteq V'$ và $s'|_V = s$. Nếu một họ $\{(s_i,V_i)\}_{i \in I}$ các phần tử của $S$ được sắp thứ tự toàn phần thì ta có thể dán các lớp cắt $s_i$ thành một lớp cắt $s$ của $\mathscr{G}$ trên $V:=\bigcup_{i \in I} V_i \subseteq U$. Ta có $\psi(s)|_{V_i} = \psi(s|_{V_i}) = \psi(s_i) = t|_{V_i}$ với mọi $i \in I$, suy ra $\psi(s) = t|V$, vậy $(s,V) \in S$. Rõ ràng $(s_i,V_i) \le (s,V)$ với mọi $i \in I$.

Theo bổ đề Zorn, $S$ có một phần tử tối đại $(s,V)$. Ta khẳng định rằng $V = U$. Thật vậy, xét $x \in U$. Vì $\psi_x$ là một toàn cấu nên tồn tại $\alpha \in \mathscr{G}_x$ sao cho $\psi_x(\alpha) = t_x$. Ta có thể viết $\alpha = r_x$, với $W \in U$ là một lân cận mở của $x$ và $r \in \mathscr{G}(W)$. Thế thì $\psi(r)_x = \psi_x(r_x) = \psi_x(\alpha) = t_x$. Thu nhỏ $W$ nếu cần thiết, ta có thể giả sử rằng $\psi(r)|_W = t|_W$. Bây giờ, $\psi(s|_{V \cap W}) = t|_{W \cap W} = \psi(r|_{V \cap W})$, nên $s|_{V \cap W} = r|_{V \cap W} + \phi(v)$ với $v \in \mathscr{V \cap W}$ nào đó. Vì $\mathscr{F}$ là flasque nên tồn tại lớp cắt $w \in \mathscr{W}$ sao cho $w|_{V \cap W} = v$. Thay $r$ bởi $r - \phi(w)$ (ta vẫn có $\psi(r) = t|_W$ thì $\psi \circ \phi = 0$), ta suy ra $s|_{V \cap W} = r|_{V \cap W}$. Do đó $s$ và $r$ có thể dán thành một lớp cắt $s' \in \mathscr{G}(V \cup W)$. Nói riêng, $(s,V) \le (s', V \cup W)$, do đó $V \cup W = V$ vì $(s,V)$ là một phần tử tối đại, nghĩa là $x \in W \subseteq V$. $\square$

 

Hệ quả. Cho  $0 \to \mathscr{F} \xrightarrow{\phi} \mathscr{G} \xrightarrow{\psi} \mathscr{H} \to 0$ là một dãy khớp các bó trên $X$, trong đó $\mathscr{F}$ và $\mathscr{G}$ là flasque. Khi đó $\mathscr{H}$ là flasque.

Chứng minh

Dùng bổ đề 5 trong đại số đồng điều. $\square$

 

Xây dựng Godement. Cho $\mathscr{F}$ là một bó bất kỳ trên $X$. Tiền bó $C^0 \mathscr{F}$ trên $X$ cho bởi $U \mapsto \prod_{x \in U} \mathscr{F}_x$ (các đồng cấu hạn chế là các phép chiếu) hiển nhiên là một bó flasque. Với mỗi tập mở $U$, $\mathscr{F}(U) \to C^0\mathscr{F}(U)$ là một đơn cấu, vì thế ta có một đơn cấu bó $\mathscr{F} \hookrightarrow C^0\mathscr{F}$. Vậy, mọi bó đều nhúng được vào một bó flasque

 

Mệnh đề. Mỗi bó nội xạ đều flasque.

Chứng minh

Cho $\mathscr{F}$ là một bó nội xạ trên $X$. Nhúng $\mathscr{F}$ vào một bó flasque $\phi: \mathscr{F} \hookrightarrow \mathscr{G}$. Vì $\mathscr{F}$ nội xạ nên $\phi$ có một rút gọn $\psi: \mathscr{G} \to \mathscr{F}$. Nói riêng, với mọi tập mở $U$ thì $\psi(U) \circ \phi(U) = \text{id}_{\mathscr{F}(U)}$, nên $\psi(U)$ là một toàn cấu. Với $V \subseteq U$ là các tập mở của $X$, ta có biểu đồ giao hoán 

9.png

Vì $\psi(U)$, $\psi(V)$ và hạn chế $\mathscr{G}(U) \to \mathscr{G}(V)$ là các toàn cấu nên $\mathscr{F}(U) \to \mathscr{F}(V)$ cũng là một toàn cấu. $\square$

 

Mệnh đề. Mỗi bó flasque đều acyclic trên từng tập mở. Nói riêng, đối đồng điều bó có thể tính được bằng giải flasque.

Chứng minh

Cho $\mathscr{F}$ là một bó flasque trên $X$. Nhúng $\mathscr{F}$ vào một bó nội xạ $\mathscr{G}$ và gọi $\mathscr{H}$ là bó thương $\mathscr{G}/\mathscr{F}$. Khi đó ta có dãy khớp $$0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0.$$ Bó $\mathscr{G}$ là nội xạ nên flasque, suy ra $\mathscr{H}$ cũng là một bó flasque. 

Cố định một tập mở $U$. Ta sẽ chứng minh rằng $\text{H}^q(U,\mathscr{F}) = 0$ với mọi bó flasque $\mathscr{F}$ và mọi $q \ge 1$ bằng nhảy chiều (dimension shifting). Thật vậy, vì $\mathscr{G}$ là nội xạ nên $U$-acyclic, nói riêng, ta có $\text{H}^{q+1}(U,\mathscr{F}) = \text{H}^q(U,\mathscr{H})$ với mọi $q \ge 1$ (xem bài trước). Điều này cho phép ta thực hiện bước quy nạp. Ở bước $q = 1$, ta có $\text{H}^1(X,\mathscr{F}) = \text{Coker}(\mathscr{G}(U) \to \mathscr{H}(U)) = 0$ (vì $\mathscr{F}$ là flasque nên $\mathscr{G}(U) \to \mathscr{H}(U)$ là một toàn cấu). Điều này kết thúc chứng minh. $\square$

 

Cho $\mathscr{F}$ là một bó tùy ý trên $X$. Ta dùng xây dựng Godement để thu được dãy khớp $$0 \to \mathscr{F} \to C^0 \mathscr{F} \to C^1 \mathscr{F} \to \cdots,$$ trong đó mỗi bó $C^q \mathscr{F}$ đều flasque. Ở đây, $C^1 \mathscr{F} = C^0 \text{Coker}(\mathscr{F} \to C^0 \mathscr{F})$ và $C^{q+1} \mathscr{F} = C^0 \text{Coker}(C^{q-1}\mathscr{F} \to C^q \mathscr{F})$ với mọi $q \ge 1$. Nó được gọi là giải chính tắc Godement của $\mathscr{F}$. Với mỗi tập mở $U$, ta có $$\text{H}^q(U,\mathscr{F}) = \frac{\text{Ker}(C^q\mathscr{F}(U) \to C^{q+1}\mathscr{F}(U) )}{\text{Im}(C^{q-1}\mathscr{F}(U) \to C^{q}\mathscr{F}(U) )}, \qquad q \ge 1.$$ Về mặt lịch sử, đây là định nghĩa các nhóm đối đồng điều $\text{H}^q(U,\mathscr{F})$ mà Godement đã đưa ra.

 

Ví dụ. Cho $X$ là một đa tạp trơn. Với $q \ge 0$, ký hiệu $\Omega^q$ là bó các $q$-dạng vi phân trơn trên $X$ ($\Omega^0 = \mathcal{C}^\infty$. Các bó này flasque (sử dụng phân hoạch đơn vị!). Ta có một dãy khớp $$0 \to \underline{\mathbb{R}} \to \mathcal{C}^\infty \xrightarrow{d} \Omega^1 \xrightarrow{d} \Omega^2 \xrightarrow{d} \cdots,$$ trong đó $d: \Omega^q \to \Omega^{q+1}$ là phép đạo hàm ngoài (theo bổ đề Poincaré, và tính chất rằng mỗi điểm của $X$ đều một cơ sở lân cận gồm các tập mở hình sao). Áp dụng hàm tử lớp cắt toàn cục, ta thu được đối đồng điều de Rham $\text{H}^q_{\text{dR}}(X)$. Vì thế đối đồng điều de Rham đẳng cấu với đối đồng điều với hệ số trong bó hằng $\underline{\mathbb{R}}$, $$\text{H}^q_{\text{dR}}(X) = \text{H}^q(X, \underline{\mathbb{R}}), \qquad q \ge 0.$$

Tương tự, xét tiền bó $\text{C}_{\text{sing}}^q(-,\mathbb{R})$ các $q$-đối dây chuyền kỳ dị với hệ số thực, $q \ge 0$. Ta có một dãy khớp $$0 \to \underline{\mathbb{R}}^{\text{pre}} \to \text{C}_{\text{sing}}^0(-,\mathbb{R}) \xrightarrow{\delta} \text{C}_{\text{sing}}^1(-,\mathbb{R}) \xrightarrow{\delta} \cdots$$ các tiền bó trên $X$, trong đó $\delta$ là các đồng cấu đối biên (kiểm tra trên thớ, và lấy giới hạn trên cơ sở lân cận gồm các tập mở hình sao). Sau khi bó hóa, ta thu được một giải flasque khác của bó hằng $\underline{\mathbb{R}}$. Từ đó ta có chứng minh được (không dễ!) rằng đối đồng điều Betti cũng đẳng cấu với đồng điều với hệ số trong bó hằng, $$\text{H}^q(X,\underline{\mathbb{R}}) = \text{H}^q_{\text{sing}}(X,\mathbb{R}), \qquad q \ge 0.$$ Ta thu được định lý de Rham cổ điển (so sánh giữa đối đồng điều de Rham và đối đồng điều Betti)! 


Trong chủ đề: Giới thiệu về bó

26-05-2021 - 17:23

7. Đối đồng điều

 

Cho $X$ là một không gian tô-pô.

 

Mệnh đề. Phạm trù $\mathbf{Sh}(X)$ các bó trên $X$ có đủ nội xạ.

Chứng minh

Cho $\mathscr{F}$ là một bó trên $X$. Với mỗi $x \in X$, nhúng $\mathscr{F}_x$ vào một nhóm abel chia được (i.e. nội xạ) $D_x$. Ta định nghĩa tiền bó $\mathscr{I}$ trên $X$ bởi $U \mapsto \prod_{x \in U} D_x$, trong đó các đồng cấu hạn chế là các phép chiếu. Dễ thấy $\mathscr{I}$ là một bó.

Vì $\mathscr{F}$ là một bó nên hợp thành $\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x \hookrightarrow \prod_{x \in U} D_x = \mathscr{I}(U)$ là một đơn cấu với mỗi tập mở $U$ của $X$. Khi $U$ thay đổi, ta thu được một đơn cấu $\mathscr{F} \hookrightarrow \mathscr{I}$. 

Ta chỉ còn phải chứng minh rằng $\mathscr{I}$ là một bó nội xạ. Cho $\phi: \mathscr{G} \to \mathscr{H}$ là một đơn cấu giữa hai bó trên $X$, và $\psi: \mathscr{G} \to \mathscr{I}$ là một cấu xạ tùy ý. Ta cần xây dựng cấu xạ $\theta: \mathscr{H} \to \mathscr{I}$ sao cho $\theta \circ \phi = \psi$. Cố định $x \in X$. Các phép chiếu $\mathscr{I}(U) \to D_x$ (với $U$ là lân cận mở của $x$) cảm sinh một đồng cấu $j_x: \mathscr{I}_x \to D_x$. Cụ thể, nếu $U$ là một lân cận mở của $x$ và $\alpha = (d_x)_{x \in U} \in \mathscr{I}(U)$ thì $j_x(\alpha_x) = d_x$ (nói cách khác, $\alpha = (j_x(\alpha_x))_{x \in U}$). Vì $\theta_x: \mathscr{G}_x \to \mathscr{H}_x$ là một đơn cấu và $D_x$ là một nhóm abel chia được nên tồn tại cấu xạ $\theta^x: \mathscr{H}_x \to D_x$ sao cho $\theta^x \circ \phi_x = j_x \circ \psi_x$. Với mỗi tập mở $U$ của $X$, ký hiệu bởi $\theta(U)$ đồng cấu hợp thành $\mathscr{H}(U) \to \prod_{x \in U} \mathscr{H}_x \xrightarrow{\prod_{x \in U} \theta^x} \prod_{x \in U} D_x = \mathscr{I}(U)$. Khi $U$ thay đổi, ta thu được một cấu xạ $\theta: \mathscr{H} \to \mathscr{I}$. Với mỗi $s \in \mathscr{G}(U)$, ta có $$\theta(\phi(s)) = (\theta^x(\phi(s)_x))_{x \in U} = (\theta^x(\psi_x(s_x)))_{x \in U} = (j_x(\psi_x(s_x)))_{x \in U} = (j_x(\psi(s)_x)_{x \in U} = \phi(s).$$ Vậy $\theta \circ \psi = \phi$. $\square$

 

Hệ quả. Phạm trù $\mathbf{Psh}(X)$ các tiền bó trên $X$ có đủ nội xạ. Hàm tử quên $\iota: \mathbf{Sh}(X) \to \mathbf{Psh}(X)$ bảo toàn nội xạ.

Chứng minh

Cho $\mathscr{I}$ là một bó nội xạ trên $X$. Ta có đẳng cấu tự nhiên $\text{Hom}_{\mathbf{Psh}(X)}(-,\mathscr{I}) = \text{Hom}_{\mathbf{Sh}(X)}((-)^{\#},\mathscr{I})$. Vì bó hóa $(-)^{\#}$ và $\text{Hom}_{\mathbf{Sh}(X)}(-,\mathscr{I})$ là các hàm tử khớp nên $\text{Hom}_{\mathbf{Psh}(X)}(-,\mathscr{I})$ cũng vậy, nghĩa là $I$ cũng nội xạ với tư cách là một tiền bó. Ngoài ra, nếu $\mathscr{P}$ là một tiền bó bất kỳ trên $X$ thì ta có thể nhúng bó $\mathscr{P}^{\#}$ vào một bó nội xạ $\mathscr{I}$. Tính đơn cấu theo nghĩa tiền bó kiểm tra được trên thớ, và bó hóa bảo toàn thớ, nên tiền bó $\mathscr{P}$ nhúng vào tiền bó nội xạ $\mathscr{I}$ qua cấu xạ hợp thành $\mathscr{P} \xrightarrow{i} \mathscr{P}^{\#} \to \mathscr{I}$. $\square$

 

Hàm tử quên $\iota: \mathbf{Sh}(X) \to \mathbf{Psh}(X)$ là liên hợp bên phải của hàm tử bó hóa $(-)^{\#}: \mathbf{Psh}(X) \to \mathbf{Sh}(X)$ nên là một hàm tử khớp trái. Cụ thể, nếu $0 \to \mathscr{F} \xrightarrow{\phi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ là một dãy khớp các bó trên $X$ thì dãy nó cũng là một dãy khớp các tiền bó. Vì $\phi$ là một đơn cấu nên tiền bó ảnh $U \mapsto \text{Im}\phi(U)$ là một bó, do đó $\text{Im} (\phi(U)) = \text{Im} \phi (U) = \text{Ker} \psi(U) = \text{Ker} (\psi(U))$, nghĩa là ta có dãy khớp $0 \to \mathscr{F}(U) \xrightarrow{\phi(U)} \mathscr{G}(U) \xrightarrow{\psi(U)} \mathscr{H}(U)$. Tóm lại, hàm tử lớp cắt $$\Gamma(U,-): \mathbf{Sh}(X) \to \mathbf{Ab}, \qquad \mathscr{F} \mapsto \mathscr{F}(U)$$ khớp trái. Vì $\mathbf{Sh}(X)$ có đủ nội xạ, ta có thể định nghĩa các hàm tử dẫn xuất phải $$\text{H}^q(U,-):=\text{R}^q \Gamma(U,-), \qquad q \ge 0.$$

 

Định nghĩa. Cho $\mathscr{F}$ là một bó trên $X$ và $U$ là một tập mở của $X$. Với $q \ge 0$, nhóm $\text{H}^q(U,\mathscr{F})$ được gọi là nhóm đối đồng điều thứ $q$ của $U$ với hệ số trong $\mathscr{F}$.

 

Vì là những hàm tử dẫn xuất, các hàm tử đối đồng điều $\text{H}^q(U,\mathscr{F})$ thỏa mãn các tính chất tổng quát từ đại số đồng điều.

  1. Để tính $\text{H}^q(U,\mathscr{F})$, chọn một giải nội xạ $$0 \to \mathscr{F} \to \mathscr{I}^0 \xrightarrow{d^0} \mathscr{I}^1 \xrightarrow{d^1} \cdots.$$ Áp dụng hàm tử khớp trái $\Gamma(U,-)$, ta thu được phức $$0 \to \mathscr{I}^0(U) \xrightarrow{d^0(U)} \mathscr{I}^1(U) \xrightarrow{d^0(U)} \cdots,$$ và khi đó $$\text{H}^0(U,\mathscr{F}) = \text{Ker}(d^0(U)) = \mathscr{F}(U), \qquad \text{H}^q(U,\mathscr{F}) = \frac{\text{Ker}(d^q(U))}{\text{Im}(d^{q-1}(U))}, \qquad q \ge 1.$$
  2. Một dãy khớp ngắn $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ các bó trên $X$ cảm sinh một dãy khớp dài $$0 \to \mathscr{F}(U) \to \mathscr{G}(U) \to \mathscr{H}(U) \to \text{H}^1(U,\mathscr{F}) \to \text{H}^1(U,\mathscr{G}) \to \text{H}^1(U,\mathscr{H}) \to \cdots$$
  3. Một bó $\mathscr{A}$ được gọi là $U$-acyclic nếu $\text{H}^q(U,\mathscr{A}) = 0$ với mọi $q \ge 1$. (nghĩa là $\mathscr{A}$ là $\Gamma(U,-)$-acyclic). Các bó nội xạ đều $U$-acyclic.
  4. Các hàm tử $\text{H}^q(U,\mathscr{F})$ được định nghĩa thông qua giải nội xạ, nhưng để tính chúng thì ta chỉ cần sử dụng giải $U$-acyclic (định lý đẳng cấu de Rham-Weil). Thật vậy, trước hết nhận xét rằng nếu $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ là một dãy khớp ngắn các bó trên $X$, trong đó $\mathscr{G}$ là $U$-acyclic thì ta có dãy khớp dài $$\cdots \to \text{H}^q(U,\mathscr{G}) \to \text{H}^{q}(U,\mathscr{H}) \to \text{H}^{q+1}(U,\mathscr{F}) \to \text{H}^{q+1}(U,\mathscr{G}) \to \cdots$$ Vì $\text{H}^q(U,\mathscr{G}) = 0$ với mọi $q \ge 1$ nên ta có $\text{H}^1(U,\mathscr{F}) = \text{Coker}(\mathscr{G}(U) \to \mathscr{H}(U))$ và $\text{H}^{q+1}(U,\mathscr{F}) = \text{H}^q(U,\mathscr{H})$ với mọi $q \ge 1$. Bây giờ, giả sử $$0 \to \mathscr{F} \to \mathscr{A^0} \to \mathscr{A^1} \to \cdots$$ là một dãy khớp dài, trong đó mỗi $\mathscr{A}^q$ đều $U$-acyclic. Ta chẻ nó thành các dãy khớp ngắn $$0 \to \mathscr{F} \to \mathscr{A^0} \to \mathscr{I}^0 \to 0$$ $$0 \to \mathscr{I}^0 \to \mathscr{A}^1 \to \mathscr{I}^1 \to 0$$ $$\vdots$$ với $\mathscr{I}^q = \text{Im}(\mathscr{A}^q \to \mathscr{A}^{q+1}) = \text{Ker}(\mathscr{A}^{q+1} \to \mathscr{A}^{q+2})$. Từ nhận xét trên, ta có $$\text{H}^q(U,\mathscr{F}) = \text{H}^{q-1}(U,\mathscr{I}^0) = \cdots = \text{H}^{1}(U,\mathscr{I}^{q-2}) = \text{Coker}(\mathscr{A}^{q-1}(U) \to \mathscr{I}^{q-1}(U)).$$ Vì $\Gamma(U,-)$ khớp trái nên $\mathscr{I}^{q-1}(U) = \text{Ker}(\mathscr{A}^q(U) \to \mathscr{A}^{q+1}(U))$. Tương tự, $\mathscr{I}^{q-1}(U) \to \mathscr{A}^q(U)$ là một đơn cấu, nên $\text{Im}(\mathscr{A}^{q-1}(U) \to \mathscr{I}^{q-1}(U)) = \text{Im}(\mathscr{A}^{q-1}(U) \to \mathscr{A}^{q}(U))$. Do đó, $$\text{H}^q(U,\mathscr{F}) = \text{Coker}(\mathscr{A}^{q-1}(U) \to \mathscr{I}^{q-1}(U)) = \frac{\mathscr{I}^{q-1}(U)}{\text{Im}(\mathscr{A}^{q-1}(U) \to \mathscr{I}^{q-1}(U))} = \frac{\text{Ker}(\mathscr{A}^q(U) \to \mathscr{A}^{q+1}(U))}{\text{Im}(\mathscr{A}^{q-1}(U) \to \mathscr{A}^{q}(U))}$$ với mọi $q \ge 1$.

Nhắc lại rằng hàm tử quên $\iota: \mathbf{Sh}(X) \to \mathbf{Psh}(X)$ khớp trái. Với $q \ge 0$, ta có thể xét hàm tử dẫn xuất bên phải thứ $q$ của $\iota$, $$\mathcal{H}^q:=\text{R}^q \iota.$$

Ta sẽ chỉ rằng rằng nếu $\mathscr{F}$ là một bó trên $X$ thì $\mathcal{H}^q(\mathscr{F})$ chính là tiền bó $\text{H}^q(-,\mathscr{F}): U \mapsto \text{H}^q(U,\mathscr{F})$. 

 

Mệnh đề. Cho $\mathscr{F}$ là một bó trên $X$ và $U$ là một tập mở của $X$. Với $q \ge 0$, ta có một đẳng cấu tự nhiên $$\mathcal{H}^q(\mathscr{F})(U) = \text{H}^q(U,\mathscr{F}).$$

Chứng minh

Ta sử dụng lý thuyết về $\partial$-hàm tử, tham khảo Tôhoku paper của Grothendieck.

Nếu $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ là một dãy khớp ngắn các bó trên $X$ thì với mọi tập mở $U$, ta có khớp dài các nhóm abel, $$0 \to \mathscr{F}(U) \to \mathscr{G}(U) \to \mathscr{H}(U) \to \text{H}^1(U,\mathscr{F}) \to \text{H}^1(U,\mathscr{G}) \to \text{H}^1(U,\mathscr{H}) \to \cdots$$ Dãy khớp dài này tự nhiên theo $U$, vì thế cho ta một dãy khớp dài các tiền bó trên $X$, $$0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to \text{H}^1(-,\mathscr{F}) \to \text{H}^1(-,\mathscr{G}) \to \text{H}^1(-,\mathscr{H}) \to \cdots$$ Nói riêng, ta có các đồng cấu nối $\text{H}^q(-,\mathscr{G}) \to \text{H}^{q+1}(-,\mathscr{F})$. Các hàm tử $\mathscr{F} \mapsto \text{H}^q(-,\mathscr{F})$ cùng với các đồng cấu nối này tạo thành một $\partial$-hàm tử từ $\mathbf{Sh}(X)$ vào $\mathbf{Psh}(X)$, trong đó $\text{H}^0 = \iota$. Mặt khác, nếu $\mathscr{I}$ là một bó nội xạ trên $X$ thì $\text{H}^q(-,\mathscr{I}) = 0$ với mọi $q \ge 1$, vì thế $\partial$-hàm tử nói trên là khớp và phổ dụng, và do đó trùng với các hàm tử dẫn xuất $\text{R}^q \iota = \mathcal{H}^q$. $\square$

 

 

Cho $f: Y \to X$ là một ánh xạ liên tục giữa các không gian tô-pô. Ảnh xuôi $f_\ast: \mathbf{Sh}(Y) \to \mathbf{Sh}(X)$ là một hàm tử khớp trái (vì nó là liên hợp bên phải của hàm tử ảnh ngược $f^{-1}: \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$.

 

Định nghĩa. Với $q \ge 0$, ta gọi dẫn xuất bên phải thứ $q$ của $f_\ast$, $$\text{R}^q f_\ast: \mathbf{Sh}(Y) \to \mathbf{Sh}(X)$$ là hàm tử ảnh xuôi bậc cao thứ $q$ (higher direct image).

 

Mệnh đề. Cho $\mathscr{G}$ là một bó trên $Y$. Khi đó $\text{R}^q f_\ast \mathscr{G}$ là bó liên kết với tiền bó $U \mapsto \text{H}^q(f^{-1}(U),\mathscr{G})$ trên $X$. 

Chứng minh

Trước hết, ta định nghĩa hàm tử ảnh xuôi trên tiền bó $f_p: \mathbf{Psh}(Y) \to \mathbf{Psh}(X)$ một cách hoàn toàn tương tự như $f_\ast$, $$f_p \mathscr{P} (U) = \mathscr{P}(f^{-1}(U)).$$ Đây là một hàm tử khớp (tính khớp theo nghĩa tiền bó có thể kiểm tra trên từng tập mở. Nhắc lại rằng bó hóa $(-)^{\#}: \mathbf{Psh}(X) \to \mathbf{Sh}(X)$ là một hàm tử khớp, do đó hàm tử $(-)^{\#} \circ f_p: \mathbf{Psh}(Y) \to \mathbf{Sh}(X)$ khớp. Hàm tử quên $\iota: \mathbf{Sh}(Y) \to \mathbf{Psh}(Y)$ gửi mỗi bó nội xạ vào một tiền bó nội xạ trên $Y$, nói riêng là $((-)^{\#} \circ f_p)$-acyclic.

Mặt khác, rõ ràng $f_p \circ \iota = \iota \circ f_\ast$, nghĩa là nếu $\mathscr{G}$ là một bó trên $Y$ thì $f_\ast \mathscr{G} = f_p \mathscr{G} = (f_p \iota \mathscr{G})^{\#}$. Nói cách khác, hàm tử ảnh xuôi $f_\ast$ phân tích thành $$\mathbf{Sh}(Y) \xrightarrow{\iota} \mathbf{Psh}(Y) \xrightarrow{(-)^{\#} \circ f_p} \mathbf{Sh}(X).$$ Vì thế ta có dãy phổ Grothendieck $$E_2^{pq} = \text{R}^p((-)\# \circ f_p)(\mathcal{H}^q(\mathscr{G})) \Rightarrow \text{R}^q f_\ast \mathscr{G}.$$ Dãy phổ này suy biến, cụ thể là $E_2^{pq} = 0$ với mọi $p > 0$, vì $(-)^{\#} \circ f_p$ là một hàm tử khớp. Từ đó suy ra rằng đồng cấu edge $$\text{R}^q f_\ast \mathscr{G} \to (f_p \mathcal{H}^q(\mathscr{G}))^{\#}$$ là một đẳng cấu với mọi $q \ge 0$. Nói cách khác, $\text{R}^q f_\ast \mathscr{G}$ là tiền bó liên kết với bó $$U \mapsto f_p  \mathcal{H}^q(\mathscr{G})(U) = \text{H}^q(f^{-1}(U),\mathscr{G})$$ trên $X$. $\square$

 

Một tính chất khác của ảnh xuôi đó là bảo toàn nội xạ. Thật vậy, cho $\mathscr{I}$ là một bó nội xạ trên $Y$. Ta có đẳng cấu tự nhiên $\text{Hom}_{\mathbf{Sh}(X)}(-,f_\ast \mathscr{I}) = \text{Hom}_{\mathbf{Sh}(Y)}(f^{-1}(-),\mathscr{I})$. Vì ảnh ngược $f^{-1}$ và $\text{Hom}_{\mathbf{Sh}(Y)}(-,\mathscr{I})$ là các hàm tử khớp nên $\text{Hom}_{\mathbf{Sh}(X)}(-,f_\ast\mathscr{I})$ cũng vậy, nghĩa là $f_\ast \mathscr{I}$ là một bó nội xạ trên $X$.

 

Chẳng hạn, nếu $Z \xrightarrow{g} Y \xrightarrow{f} X$ là các ánh xạ liên tục giữa các không gian tô-pô thì $g_\ast$ gửi mỗi bó nội xạ trên $Z$ vào một bó $f_\ast$-acyclic trên $Y$. Từ đó ta có dãy phổ Grothendieck $$E_2^{pq} = (\text{R}^p f_\ast(\text{R}^q g_\ast\mathscr{H})) \Rightarrow \text{R}^{p+q}(f \circ g)_\ast \mathscr{H}$$ với mỗi bó $\mathscr{H}$ trên $Z$.

 

Cho $f: Y \to X$ là một ánh xạ liên tục giữa hai không gian tô-pô. Với mỗi tập mở $U$ của $X$, ta có $\Gamma(f^{-1}(U),-) = \Gamma(U,-) \circ f_\ast$. Mặt khác, $f_\ast$ gửi mỗi bó nội xạ trên $Y$ vào một bó nội xạ (nói riêng là $U$-acyclic) trên $X$. Do đó ta có dãy phổ $$E^{pq}_2 = \text{H}^p(U, \text{R}^q f_\ast \mathscr{G}) \Rightarrow \text{H}^{p+q}(f^{-1}(U), \mathscr{G})$$ với mỗi bó $\mathscr{G}$ trên $Y$, được gọi là dãy phổ Leray.


Trong chủ đề: Giới thiệu về bó

26-05-2021 - 04:05

6. Ảnh xuôi

 

Cho $f: Y \to X$ là một ánh xạ liên tục giữa hai không gian tô-pô. Nếu $\mathscr{G}$ là một bó trên $Y$ thì ta định nghĩa tiền bó $f_\ast \mathscr{G}$ trên $X$ bởi $f_\ast \mathscr{G}(U) = \mathscr{G}(f^{-1}(U))$. Đây là một bó, vì nếu $U = \bigcup_{i \in I} U_i$ là một phủ mở (gồm các tập mở của $X$) thì $f^{-1}(U) = \bigcup_{i \in I}f^{-1}(U_i)$ là một phủ mở (gồm các tập mở của $Y$); sau đó ta áp dụng tiên đề dán cho bó $\mathscr{G}$ trên phủ mở này để chứng minh tiên đề dán cho tiền bó $f_\ast \mathscr{G}$.

Xây dựng trên có tính hàm tử: Nếu $\phi: \mathscr{G} \to \mathscr{G}'$ là một đồng cấu giữa hai bó trên $Y$ thì ta có một đồng cấu bó $f_\ast \phi: f_\ast \mathscr{G} \to f_\ast \mathscr{G}'$ giữa hai bó trên $X$, trong đó $f_\ast \phi(U) = \phi(f^{-1}(U)): \mathscr{G}(f^{-1}(U)) \to \mathscr{G}'(f^{-1}(U))$ với mọi tập mở $U$ của $X$.

 

Cho $\mathscr{F}$ là một bó trên $X$. Ở bài trước, ta đã xây dựng đồng cấu liên hợp $$a(U): \mathscr{F}(U) \to f^{-1} \mathscr{F}(f^{-1}(U)) = f_\ast f^{-1} \mathscr{F}(U), \qquad s \mapsto (s_{f(y)})_{y \in f^{-1}(U)}$$ với mỗi tập mở $U$ của $X$. Khi $U$ thay đổi, ta thu được cấu xạ liên hợp $a: \mathscr{F} \to f_\ast f^{-1} \mathscr{F}$ giữa hai bó trên $X$. Cho $\mathscr{G}$ là một bó trên $Y$. Ta xây dựng đồng cấu $$\eta: \text{Hom}_{\mathbf{Sh}(Y)}(f^{-1} \mathscr{F}, \mathscr{G}) \to \text{Hom}_{\mathbf{Sh}(X)}(\mathscr{F},f_\ast \mathscr{G}), \qquad \phi \mapsto f_\ast \phi \circ a.$$

 

Hệ quả. $\eta$ là một đẳng cấu, tự nhiên theo $\mathscr{F}$ và $\mathscr{G}$.

Chứng minh

$\eta$ là một đơn cấu. Cho $\phi: \mathscr{F}^{-1} \to \mathscr{G}$ là một cấu xạ. Cố định $y \in Y$. Với mỗi lân cân mở $U$ của $f(y)$, ta có biểu đồ giao hoán

6.png
Lấy giới hạn khi $U \owns f(y)$ thay đổi, ta thu được biểu đồ giao hoán.
7.png
Ta đã biết rằng biết rằng $a_y$ là một đẳng cấu. Nếu $\eta(\phi) = 0$ thì từ đây ta suy ra $\phi_y = 0$ với mọi $y \in Y$, do đó $\phi = 0$.
 
$\eta$ là một toàn cấu. Cho $\psi: \mathscr{F} \to f_\ast\mathscr{G}$ là một cấu xạ. Với mỗi $y \in Y$, xét cấu xạ $b_y: (f_\ast \mathscr{G})_{f(y)} \to \mathscr{G}_y$ trong biểu đồ giao hoán ở trên. Cụ thể, nếu $U$ là một lân cận mở của $f(y)$ và $s \in f_\ast \mathscr{G}(U) = \mathscr{G}(f^{-1}(U))$ thì $b_y(s_{f(y)}) = s_y$. Ta xây dựng cấu xạ $\phi: f^{-1} \mathscr{F} \to \mathscr{G}$ như sau. Cho $V$ là một tập mở của $Y$ và $\alpha = (\alpha_y)_{y \in V}) \in f^{-1} \mathscr{F}(V)$ là một mầm $f$-tương thích. Khi đó $(b_y(\psi_{f(y)}(\alpha_y)))_{y \in V} \in \prod_{y \in V} \mathscr{G}_y$ là một mầm tương thích. Vì $\mathscr{G}$ là một bó nên tồn tại một lớp cắt suy nhất, mà ta ký hiệu là $\phi(\alpha) \in \mathscr{G}(U)$, sao cho $\phi(\alpha)_y = b_y(\psi_{f(y)}(\alpha_y))$ với mọi $y \in V$.
Ta chứng minh rằng $\psi = f_\ast \phi \circ a: \mathscr{F} \to f_\ast \mathscr{G}$. Thật vậy, cho $U$ là một tập mở của $X$ và $s \in \mathscr{F}(U)$. Ta cần chứng minh rằng $\psi(s) = \phi(a(s)) \in \mathscr{G}(f^{-1}(U))$: với mọi $y \in f^{-1}(U)$, ta có $$\phi(a(s))_y = b_y(\psi_{f(y)}(a(s)_y)) = b_y(\psi_{f(y)}(s_{f(y)})) = b_y(\psi(s)_{f(y})) = \psi(s)_{y},$$ do đó $\psi(s) = \phi(a(s))$. Vậy $\psi = f_\ast \phi \circ a = \eta(\phi)$.

 

$\eta$ tự nhiên theo $\mathscr{F}$ và $\mathscr{G}$. Cho $\psi: \mathscr{F'} \to \mathscr{F}$ là một đồng cấu giữa hai bó trên $X$ và $\theta: \mathscr{G} \to \mathscr{G'}$ là một đồng cấu giữa hai bó trên $Y$. Ta cần chứng minh rằng biểu đồ

8.png

giao hoán. Cho $\phi: f^{-1}\mathscr{F} \to \mathscr{G}$ là một cấu xạ. Ta cần chứng minh rằng $$f_\ast \theta \circ f_\ast \phi \circ a \circ \psi = f_\ast(\theta \circ \phi \circ f^{-1}\psi) \circ a.$$ Vì tính hàm tử của $f_\ast$ nên ta chỉ còn phải chứng minh rằng $a \circ \psi = f_\ast f^{-1} \psi \circ a: \mathscr{F'} \to f_\ast f^{-1} \mathscr{F}$. Đây chính là tính tự nhiên của cấu xạ liên hợp $a$. $\square$

 

Mệnh đề. Ảnh xuôi $f_\ast$ là liên hợp bên phải của hàm tử ảnh ngược $f^{-1}$. Nói riêng, $f_\ast$ khớp trái.

 

Ví dụ. 

  1. Cho $Z \xrightarrow{g} Y \xrightarrow{f} X$ là các ánh xạ liên tục giữa các không gian tô-pô. Từ định nghĩa của $f_\ast$ và $g_\ast$, ta có $(f \circ g)_\ast = f_\ast \circ g_\ast: \mathbf{Sh}(Z) \to \mathbf{Sh}(X)$ một cách hiển nhiên. Từ đây, ta có một chứng minh đơn giản rằng $(f \circ g)^{-1} \simeq g^{-1} \circ f^{-1}$. Thật vậy, cho $\mathscr{F}$ là một bó trên $X$. Với mọi bó $\mathscr{H}$ trên $Z$, ta có các đẳng cấu tự nhiên (theo $\mathscr{H})$ $$\text{Hom}_{\mathbf{Sh}(Z)}((f \circ g)^{-1} \mathscr{F}, \mathscr{H}) = \text{Hom}_{\mathbf{Sh}(X)}(\mathscr{F}, (f \circ g)_\ast \mathscr{H}) = \text{Hom}_{\mathbf{Sh}(X)}(\mathscr{F}, f_\ast g_\ast \mathscr{H}) = \text{Hom}_{\mathbf{Sh}(Y)}(f^{-1} \mathscr{F}, g_\ast \mathscr{H}) = \text{Hom}_{\mathbf{Sh}(Y)}(g^{-1} f^{-1} \mathscr{F}, \mathscr{H}),$$ từ đó $(f \circ g)^{-1} \mathscr{F} \simeq g^{-1} f^{-1} \mathscr{F}$ theo bổ đề Yoneda. Đẳng cấu này tự nhiên theo $\mathscr{F}$ vì các đẳng cấu ở trên đều như vậy, do đó hai hàm tử $(f \circ g)^{-1}$ và $g^{-1} \circ f^{-1}$ đẳng cấu.
  2. Cho $x \in X$ và $i_x: \{x\} \to X$ là phép bao hàm. Cho $A$ là một nhóm abel, mà ta có thể xem là bó $$\varnothing \mapsto 0, \qquad \{x\} \mapsto A$$ trên $X$. Khi đó đẩy xuôi $i_{x,\ast} A$ chính là bó chọc trời tại $x$ của $X$.

Trong chủ đề: Giới thiệu về bó

25-05-2021 - 15:58

5. Ảnh ngược

 

Ở bài này, ta cố định một ánh xạ liên tục $f: Y \to X$ giữa hai không gian tô-pô.

 

Cho $\mathscr{F}$ là một bó trên $X$. Ta muốn dùng $f$ để kéo lùi nó thành một bó trên $Y$. Xây dựng này rất giống với bó hóa.

Với mỗi tập mở $V$ của $Y$, một bộ $(\alpha_y)_{y \in V} \in \prod_{y \in V} \mathscr{F}_{f(y)}$ được gọi là một mầm $f$-tương thích của $\mathscr{F}$ trên $V$ nếu với mỗi $y \in V$, tồn tại các tập mở $U \subseteq X$ và $V' \subseteq V \cap f^{-1}(U)$ với $y \in V'$ và một lớp cắt $s \in \mathscr{F}(U)$ sao cho $\alpha_{y'} = s_{f(y')}$ với mọi $y' \in V'$. Các mầm $f$-tương tích của $\mathscr{F}$ trên $V$ lập thành một nhóm con của $\prod_{y \in V} \mathscr{F}_{f(y)}$, ta ký hiệu nhóm này bởi $f^{-1}\mathscr{F}(V)$.

Nếu $W \subseteq V$ là các tập mở của $Y$, phép chiếu $\prod_{y \in V} \mathscr{F}_{f(y)} \to \prod_{y \in W} \mathscr{F}_{f(y)}$ cảm sinh một đồng cấu hiển nhiên $f^{-1} \mathscr{F}(V) \to f^{-1} \mathscr{F}(W)$. Hiển nhiên ta có một tiền bó trên $Y$, $$f^{-1} \mathscr{F}: V \mapsto f^{-1} \mathscr{F}(V).$$ Ta khẳng định rằng đây là một bó. Thật vậy, cho $V = \bigcup_{i \in I}V_i$ là một phủ mở (gồm các tập mở của $Y$). Cho $\alpha^i = (\alpha^i_y)_{y \in V_i} \in f^{-1} \mathscr{F}(V_i)$ với mỗi $i \in I$, sao cho $\alpha^i_y = \alpha^j_y$ với mọi $i,j \in I$ và mọi $y \in V_i \cap V_j$. Điều này cho phép ta định nghĩa bộ $\alpha = (\alpha_y)_{y \in V}$ như sau. Với mỗi $y \in V$, lấy chỉ số $i \in I$ tùy ý sao cho $y \in V_i$ và đặt $\alpha_y:=\alpha^i_y$. Đây là một mầm $f$-tương thích (vì tính địa phương của định nghĩa mầm $f$-tương thích), vậy $\alpha \in f^{-1}\mathscr{F}(V)$ thỏa mãn $\alpha|_{V_i} = \alpha^i$ với mọi $i \in I$. Hiển nhiên $\alpha$ là lớp cắt duy nhất của $f^{-1}\mathscr{F}$ trên $V$ thỏa mãn tính chất này.

 

Định nghĩa. Bó $f^{-1} \mathscr{F}$ được gọi là ảnh ngược (hay kéo lùi) của bó $\mathscr{F}$ bởi $f$.

Ảnh ngược có tính hàm tử theo nghĩa hiển nhiên. Mỗi đồng cấu $\phi: \mathscr{F} \to \mathscr{F'}$ các bó trên $X$ cảm sinh một đồng cấu $f^{-1} \phi: f^{-1} \mathscr{F}  \to f^{-1} \mathscr{F}'$ các bó trên $Y$. Cụ thể, với $V$ là một tập mở của $Y$ và $\alpha = (\alpha_y)_{y \in V} \in f^{-1}\mathscr{F} (V)$ là một mầm $f$-tương thích thì $f^{-1}\phi(\alpha) = (\phi_{f(y)}(\alpha_y))_{y \in V}$.

 

Bước đầu tiên, ta sẽ chứng minh rằng phép kéo lùi bó bảo toàn thớ.

 

Cho $U$ là một tập mở của $X$. Ta có một đồng cấu liên hợp (adjunction map) $$a_U: \mathscr{F}(U) \to f^{-1} \mathscr{F} (f^{-1}(U)), \qquad s \mapsto (s_{f(y)})_{y \in f^{-1}(U)}.$$ Với mỗi $y \in f^{-1}(U)$, hợp thành của cấu xạ chính tắc $f^{-1}\mathscr{F} (f^{-1}(U)) \to (f^{-1}\mathscr{F})_y$ với $a_U$ cho ta một cấu xạ $\mathscr{F}(U) \to (f^{-1}\mathscr{F})_y$. Cố định $y$ và lấy đối giới hạn khi $U \owns f(y)$ thay đổi, ta thu được cấu xạ $a_y: \mathscr{F}_{f(y)} \to (f^{-1}\mathscr{F})_y$.

 

Mệnh đề. $a_y: \mathscr{F}_{f(y)} \to (f^{-1}\mathscr{F})_y$ là một đẳng cấu với mỗi $y \in Y$.

Chứng minh

Với mỗi lân cận mở $V$ của $y$, ký hiệu $p_V: f^{-1}\mathscr{F}(V) \to \mathscr{F}_{f(y)}$ là phép chiếu lên tọa độ $y \in V$. Khi $V$ thay đổi, các cấu xạ $p_V$ tương thích với các đồng cấu hạn chế của $f^{-1}\mathscr{F}$, vì thế chúng cảm sinh một đồng cấu $p_y: (f^{-1}\mathscr{F})_y \to \mathscr{F}_{f(y)}$. Với mỗi lân cân mở $U$ của $f(y)$, hợp thành $p_{f^{-1}(U)} \circ a_U: \mathscr{F}(U) \to \mathscr{F}_{f(y)}$ là đồng cấu chính tắc $s \mapsto s_{f(y)}$. Do đó $p_y \circ a_y = \text{id}_{\mathscr{F}_{f(y)}}$ theo tính chất phổ dụng của đối giới hạn. Nói riêng, $a_y$ là một đơn cấu.

Tiếp theo, xét $\alpha \in (f^{-1}\mathscr{F})_y$. Thế thì $\alpha$ là mầm tại $y$ của một lớp cắt $\beta = (\beta_y)_{y \in V} \in f^{-1} \mathscr{F}(V)$, với $V$ là một lân cận mở của $y$. Vì $\beta$ là một mầm $f$-tương thích nên tồn tại các tập mở $U \subseteq X$ và $V' \subseteq V \cap f^{-1}(U)$ với $y \in V'$ và một lớp cắt $s \in \mathscr{F}(U)$ sao cho $\beta_{y'} = s_{f(y')}$ với mọi $y' \in V'$, nghĩa là $a_U(s)|_{V'} = \beta|_{V'}$, từ đó $a_U(s)_y = \alpha$. Mặt khác, biểu đồ 

3.png

giao hoán, do đó $\alpha = a_U(s)_y = a_y(s_{f(y)}$, vậy $a_y$ là một toàn cấu. $\square$

 

Hệ quả. Hàm từ ảnh ngược $f^{-1}: \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$ là một hàm tử khớp.

Chứng minh

Cho $\mathscr{F'} \to \mathscr{F} \to \mathscr{F''}$ là một dãy khớp các bó trên $X$. Với mỗi $y \in Y$, ta có biểu đồ giao hoán

4.png

trong đó các mũi tên dọc là các đẳng cấu cảm sinh từ các đồng cấu liên hợp. Vì tính khớp có thể kiểm tra trên thớ nên ta có dãy khớp $f^{-1}\mathscr{F'} \to f^{-1}\mathscr{F} \to f^{-1}\mathscr{F''}$. $\square$

 

Ta có một mô tả khác cho bó $f^{-1} \mathscr{F}$ như sau. Xét $\mathscr{P}$ là tiền bó trên $Y$ cho bởi $V \mapsto \varinjlim_{U \supseteq f(V)} \mathscr{F}(U)$ (các đồng cấu hạn chế được định nghĩa một cách hiển nhiên). Với $V$ là một tập mở của $Y$ vào $U \supseteq f(V)$ là một tập mở của $X$, ta có đồng cấu $\mathscr{F}(U) \xrightarrow{a_U} f^{-1} \mathscr{F}(f^{-1}U)) \xrightarrow{r_{f^{-1}(U) \to V}} f^{-1}\mathscr{F}(V)$. Chúng cảm sinh một đồng cấu $\phi(V): \mathscr{P}(V) \to f^{-1}\mathscr{F}(V)$. Khi $V$ thay đổi, ta thu được một cấu xạ giữa hai tiền bó $\phi: \mathscr{P} \to f^{-1} \mathscr{F}$.

Với $y \in Y$, ta tính thớ $\mathscr{P}_y = \varinjlim_{U \supseteq f(V), V \owns y} \mathscr{F}(U)$. Với $U$ là lân cận mở tùy ý của $Y$ thì $V = f^{-1}(U)$ là một lân cận mở của $y$ và $U \supseteq f(V)$. Do đó đối giới hạn vừa xét là cofinal, nên ta có $\mathscr{P}_y = \varinjlim_{U \owns f(y)} \mathscr{F}(U) = \mathscr{F}_{f(y)}$. 

Với $V$ là lân cận mở của $y$ và $U \supseteq f(V)$ là một tập mở trong $X$, ta có biểu đồ giao hoán

5.png

Theo mệnh đề trên thì $\phi_y = a_y$ là một đẳng cấu. Theo chính chất phổ dụng của bó liên kết, $\phi$ cảm sinh một cấu xạ $\phi': \mathscr{P}^{\#} \to f^{-1}\mathscr{F}$. Đây là một đẳng cấu, vì nó cảm sinh đẳng cấu trên từng thớ (bó hóa bảo toàn thớ). Như vậy, bó ảnh ngược $f^{-1}\mathscr{F}$ chính là bó liên kết với tiền bó $$V \mapsto \varinjlim_{U \supseteq f(V)} \mathscr{F}(U).$$

 

Ví dụ.

1. Cho $U \subseteq X$ là một tập mở $i: U \to X$ là phép bao hàm. Thế thì $i^{-1} \mathscr{F}$ là bó hạn chế $\mathscr{F}|_U$ của $\mathscr{F}$ trên $U$ cho bởi $U' \mapsto \mathscr{F}(U')$.

2. Cho $x \in X$ và $i: \{x\} \to X$ là phép bao hàm. Thế thì $i^{-1} \mathscr{F}$ là bó trên $\{x\}$ cho bởi $\varnothing \mapsto 0$ và $\{x\} \mapsto \mathscr{F}_x$.

3. Cho $Z \xrightarrow{g} Y \xrightarrow{f} X$ là các ánh xạ liên tục giữa các không gian tô-pô. Với mỗi bó $\mathscr{F}$ trên $X$, ta có đẳng cấu tự nhiên $g^{-1}(f^{-1} \mathscr{F}) \simeq (f \circ g)^{-1} \mathscr{F}$.