Đến nội dung

MyWorldMaths

MyWorldMaths

Đăng ký: 09-12-2018
Offline Đăng nhập: 02-05-2021 - 07:23
-----

#719292 đề thi hsg toán thành phố Hà Nội 2018-2019

Gửi bởi MyWorldMaths trong 10-01-2019 - 11:31

Kì thi chọn HSG toán thành phố lớp 9

Thời gian :150 phút

Bài 1:(5 điểm)

1. Giải PT :$\sqrt[3]{2-x}=1-\sqrt{x-1}$

 

2. Cho $S=(1-\frac{2}{2.3})(1-\frac{2}{3.4})...(1-\frac{2}{2020.2021})$ là tích của 2019 thừa số. Tính S (lấy kết quả là phân số tối giản)

 

Bài 2:(5 điểm)

1. Biết a,b là các số nguyên dương thỏa mãn $a^{2}-ab+b^{2}\vdots 9$. CMR cả a và b đều chia hết cho 3.

 

2. Tìm các số nguyên dương n sao cho $9^{n}+11$ là tích của k (k thuộc N, k >=2) số tự nhiên liên tiếp.

 

Bài 3:(3 điểm)

1. Cho x,y,z là các số thực dương nhỏ hơn 4. CMR  trong các số $\frac{1}{x}+\frac{1}{4-y};\frac{1}{y}+\frac{1}{4-z};\frac{1}{z}+\frac{1}{4-x}$ tồn tại ít nhất 1 số lớn hơn hoặc bằng 1.

 

2. Với a,b,c dương thỏa mãn $a^{2}+b^{2}+c^{2}+2abc=1.$. Tìm MAX $P=ab+bc+ca-abc$

 

Bài 4:(6 điểm)

        Cho tam giác ABC vuông tại A  (AB<AC). Đường tròn (I) nội tiếp tam giác ABC, tiếp xúc BC,CA,AB lần lượt tại D,E,F. Gọi S là giao điểm của AI và DE.

          1. CMR tam giác IAB đồng dạng tam giác EAS.

          2. Gọi K là trung điểm của AB. O là trung điểm của BC. CMR K,O,S thẳng hàng

          3. Gọi M là giao điểm của KI và AC. Đường thẳng chứa đường cao AH của tam giác ABC cắt DE tại N. CMR AM=AN

 

Bài 5:(1 điểm)

       Xét bảng ô vuông cỡ 10x10 gồm 100 hình vuông có cạnh 1 đơn vị. Người ta điền vào mỗi ô vuông của bảng 1 số nguyên tùy ý sao cho hiệu hai số được điền ở hai ô chung cạnh bất kỳ đều có GTTĐ ko vượt quá 1. CMR tồn tại một số nguyên xuất hiện trong bảng ít nhất 6 lần. 

 




#719138 bài toán dở dang

Gửi bởi MyWorldMaths trong 06-01-2019 - 14:24

Mình có bài BĐT này

 Cho  $x,y,z>0$ và xyz=1. $\sum \frac{x^{4}y}{x^{2}+1}\geq \frac{3}{2}$

                                         Giải

Mình giải thế này:

Đặt $x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}$. Suy ra abc=1

Ta có $\frac{x^{4}y}{x^{2}+1}=\frac{a^{2}}{a^{4}b(a^{2}+1)}$=$\frac{1}{a^{2}b(a^{2}+1)}=\frac{a^{2}b^{2}c^{^{2}}}{a^{^{2}}b(a^{2}+1)}=\frac{bc^{2}}{a^{2}+1}=\frac{bc^{2}(a^{2}+1)-bc^{2}a^{2}}{a^{2}+1}=bc^{2}-\frac{ac}{a^{2}+1}\geq bc^{2}-\frac{ac}{a^{2}+1}=bc^{2}-\frac{c}{2}$

Chứng minh tương tự rồi cộng theo vế, có: $VT\geq ab^{2}+bc^{^{2}}+ca^{2}-(\frac{a}{2}+\frac{b}{2}+\frac{c}{2})$ (1)

Áp dụng AM_GM $ab^{2}+\frac{1}{a}\geq 2b$. suy ra $ab^{2}+bc^{2}+ca^{2}\geq 2(a+b+c)-(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ 

suy ra $ab^{2}+bc^{2}+ca^{2}-\frac{a+b+c}{2}\geq \frac{3}{2}(a+b+c)-(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ (2)

 

Từ (1) và (2) có $VT\geq$  \frac{3}{2}(a+b+c)-(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ 

đến đây mình ko làm đc nữa. bạn nào giải giùm mình với. các bạn giải cách khác cũng đc. Cám ơn nhiều.  :D  :D  :D




#718719 bất đẳng thức

Gửi bởi MyWorldMaths trong 26-12-2018 - 22:50

câu 3 bạn còn cần không để hôm nào mình gửi luôn cho 

Được. cám ơn bạn. 

Mình có mới đăng một số bài. bạn vào nghiên cứu thử nhé!!




#718718 bất đẳng thức

Gửi bởi MyWorldMaths trong 26-12-2018 - 22:49

Với $\it{x},\,\it{y},\,\it{z}\geqq \it{0}$ thì: $\it{0}< \frac{\it{1}+ \it{x}}{\it{1}+ \it{x}+ \it{x}},\,\frac{\it{1}+ \it{y}}{\it{1}+ \it{y}+ \it{y}},\,\frac{\it{1}+ \it{z}}{\it{1}+ \it{z}+ \it{z}}\leqq 1$

Xét trường hợp ít nhất một trong ba biến bằng $0$ , không mất tính tổng quát trong chứng minh, chẳng hạn $\it{a}$ , khi đó:

 

$$\it{1}- \sum\limits_{cyc}\,\frac{\it{a}}{\it{b}+ \it{c}+ \it{1}}- \left ( \it{1}- \it{a} \right )\left ( \it{1}- \it{b} \right )\left ( \it{1}- \it{c} \right )= \frac{\it{bc}\left ( \it{1}- \it{bc} \right )}{\left ( \it{b}+ \it{1} \right )\left ( \it{c}+ \it{1} \right )}\geqq \it{0}$$

 

Giờ đây, ta chỉ cần đặt: $\it{a}= \frac{\it{1}+ \it{x}}{\it{1}+ \it{x}+ \it{x}},\,\it{b}= \frac{\it{1}+ \it{y}}{\it{1}+ \it{y}+ \it{y}},\,\it{c}= \frac{\it{1}+ \it{z}}{\it{1}+ \it{z}+ \it{z}}$ , sẽ có được biểu thức vế trái với hệ số của $\it{x},\,\it{y},\,\it{z}$ đều không âm!

Bạn có thể trả lời cụ thể hơn ko. Mình ko hiểu! cám ơn




#718564 bất đẳng thức

Gửi bởi MyWorldMaths trong 20-12-2018 - 22:56

$\lceil\,\,3\,\,\rfloor$ Viết lại bất đẳng thức dưới dạng thuần nhất :

$\frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{a}+ \mathit{b} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{b}+ \mathit{c} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{c}+ \mathit{a} \right )^{\,\mathit{3}}}\geqq \frac{\mathit{a}}{\mathit{b}+ \mathit{c}}+ \frac{\mathit{b}}{\mathit{c}+ \mathit{a}}+ \frac{\mathit{c}}{\mathit{a}+ \mathit{b}}$

Nếu viết lại bất đẳng thức trên theo kiểu $\mathit{3}\,\mathit{u}= \mathit{a}+ \mathit{b}+ \mathit{c},\,\mathit{3}\,\mathit{v}^{\,\mathit{2}}= \mathit{ab}+ \mathit{bc}+ \mathit{ca},\,\mathit{w}^{\,\mathit{3}}= abc$ , hiển nhiên trong chứng minh uvw thì thường dùng nhiều $\mathit{u}> \mathit{v}> \mathit{w}$ , do đó hệ số của $\mathit{abc}$ luôn âm , bài toán này bị ngược dấu !

Spoiler

Do bất đẳng thức thuần nhất nên không mất tính tổng quát , giả sử $\mathit{b}= \mathit{c}= 1$ . Khi đó :

$- \left ( \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{a}+ \mathit{b} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{b}+ \mathit{c} \right )^{\,\mathit{3}}}+ \frac{\mathit{4}\,\mathit{abc}}{\left ( \mathit{c}+ \mathit{a} \right )^{\,\mathit{3}}} \right )+ \frac{\mathit{a}}{\mathit{b}+ \mathit{c}}+ \frac{\mathit{b}}{\mathit{c}+ \mathit{a}}+ \frac{\mathit{c}}{\mathit{a}+ \mathit{b}}= \frac{\mathit{2}\left ( \mathit{a}- \mathit{1} \right )^{\,\mathit{2}}}{\left ( \mathit{a}+ \mathit{1} \right )^{\,\mathit{3}}}\geqq \mathit{0}$

Spoiler

i'm so sorry đề bài là a+b+c=3




#718563 bất đẳng thức

Gửi bởi MyWorldMaths trong 20-12-2018 - 22:53

$\lceil\,\,1\,\,\rfloor$

Sử dụng phép thế Ravi , vì vậy đặt : $\left\{\begin{matrix} a & = & \frac{{x}_{\,1}+ {x}_{\,2}+ {x}_{\,3}- {x}_{\,4}}{2}\\ \\ b & = & \frac{{x}_{\,2}+ {x}_{\,3}+ {x}_{\,4}- {x}_{\,1}}{2}\\ \\ c & = & \frac{{x}_{\,3}+ {x}_{\,4}+ {x}_{\,1}- {x}_{\,2}}{2}\\ \\ d & = & \frac{{x}_{\,4}+ {x}_{\,1}+ {x}_{\,2}- {x}_{\,3}}{2} \end{matrix}\right.$ với $x_{\,1,\,2,\,3,\,4}> 0$ . Ta có:

 

$\text{P}= \frac{x_{\,1}+ x_{\,2}+ x_{\,3}- x_{\,4}}{4\,x_{\,4}}+ \frac{x_{\,2}+ x_{\,3}+ x_{\,4}- x_{\,1}}{4\,x_{\,1}}+ \frac{x_{\,3}+ x_{\,4}+ x_{\,1}- x_{\,2}}{4\,x_{\,2}}+ \frac{x_{\,4}+ x_{\,1}+ x_{\,2}- x_{\,3}}{4\,x_{\,3}}= $ $= \frac{x_{\,1}}{4\,x_{\,4}}+ \frac{x_{\,2}}{4\,x_{\,4}}+ \frac{x_{\,3}}{4\,x_{\,4}}- \frac{1}{4}+ \,...\,+ \frac{x_{\,4}}{4\,x_{\,3}}+ \frac{x_{\,1}}{4\,x_{\,3}}+ \frac{x_{\,2}}{4\,x_{\,3}}- \frac{1}{4}\geqq 2$

Mình mới thấy phép thế ravi trong tam giác vậy trong tứ giác thì làm cách nào bạn có thể suy luận ra cách đặt như thế




#718378 bất đẳng thức

Gửi bởi MyWorldMaths trong 14-12-2018 - 09:45

khó đây, nghĩ hòa không ra

bài 1:

Cho a,b,c,d là 4 cạnh của một tứ giác lồi Tìm MIN $P=\frac{a}{b+c+d-a}+\frac{b}{c+d+a-c}+\frac{c}{a+b+d-c}+\frac{d}{a+b+c-d}$

Bài 2:

cho a,b,c>0 CMR $\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\frac{c}{a+b+2c}\leq \frac{3}{4}$

bài 3: Cho a,b,c>0 và a=b=c=1. CMR $\frac{4}{(a+b)^{3}}+\frac{4}{(b+c)^{3}}+\frac{4}{(c+a)^{3}}\geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

Bài 4: cho a,b,c>0 CMR $\sqrt{(a^{2}b+b^{2}c+c^{2}a)(ab^{2}+bc^{2}+ca^{2})}\geq abc+\sqrt{(a^{3}+abc)(b^{3}+abc)(c^{3}+abc)}$

 

MOng được nhận giúp đỡ!!!