BĐT tương đương:
$(\frac{a}{b^{3}}+\frac{b}{a^{3}})ab\geq (\frac{1}{a^{2}}+\frac{1}{b^{2}})ab$
$\Leftrightarrow (\frac{a}{b})^{2}+(\frac{b}{a})^{2}\geq \frac{a}{b}+\frac{b}{a}$
Đặt $t=\frac{a}{b}+\frac{b}{a}$ , $t\geq 2$
$\Leftrightarrow t^{2}-2\geq t$
$\Leftrightarrow (t+1)(t-2)\geq 0$
dpcm. Dấu "=" khi a=b