$\Leftrightarrow \sum \frac{2a}{b+c} -3\leq 2\left ( \sum \frac{a}{b} -3\right )$
$2\left ( \sum \frac{a}{b+c} -\frac{3}{2} \right )\leq 2\left ( \sum \frac{a}{b} -3\right )$
$\sum \frac{a}{b}-3=\sum \frac{a^{2}}{ab}-3\geq \frac{\left ( \sum a \right )^{2}}{\sum ab}-3=\frac{\sum (a-b)^{2}}{2\sum ab}$
$\Rightarrow 2\left ( \sum \frac{a}{b}-3 \right )\geq \frac{\sum (a-b)^{2}}{\sum ab}$
$2\left ( \sum \frac{a}{b+c}-\frac{3}{2} \right )=2\left ( \sum \frac{(a-b)^{2}}{2(a+c)(b+c)} \right )=\sum \frac{(a-b)^{2}}{(a+c)(b+c)}$
Can : $\sum \frac{(a-b)^{2}}{(a+c)(b+c)}\leq \sum \frac{(a-b)^{2}}{ab+bc+ca}$
$\Leftrightarrow \sum \left ( a-b\right )^{2}\left ( \frac{1}{\sum ab} -\frac{1}{(a+c)(b+c)}\right )\geq 0 \Leftrightarrow\sum \left ( a-b \right )^{2}\left ( \frac{c^{2}}{\sum ab.(a+c)(b+c)} \right )\geq 0$