$x^2+yz\geq 2x\sqrt{yz}$
$\Rightarrow \frac{1}{x^2+yz}\leq \frac{1}{2x\sqrt{yz}}$
Tuong tu $\Rightarrow \sum \frac{1}{x^2+yz}\leq \sum \frac{1}{2x\sqrt{yz}}$
Ta co: $\sum \frac{1}{2\sqrt{xy}\sqrt{xz}}\leq \sum \frac{1}{2xy}$
$\Rightarrow \sum \frac{1}{x^2+yz}\leq \sum \frac{1}{xy}$