Em không biết cách này có đúng không và khá dài, mọi người có cách nào hay hơn thì chỉ em với
Hai số nguyên tố lớn hơn 5 thì có hiệu lớn hơn hoặc bằng 2 và là số chẵn. Dễ dàng chứng minh được trong các số $b-a, c-b, d-c$ nếu tồn tại một số lớn hơn hoặc bằng 6 hoặc hai số lớn hơn hoặc bằng 4 thì sẽ không tmđk $a<b<c<d<a+10$.
Từ đó suy ra được $(a,b,c,d)\in\left\{(a,a+2,a+4,a+6),(a,a+2,a+4,a+8),(a,a+2,a+6,a+8),(a,a+4,a+6,a+8)\right\}.$
Nhận thấy nếu $(a,b,c,d)\in\left\{(a,a+2,a+4,a+6),(a,a+2,a+4,a+8),(a,a+4,a+6,a+8)\right\}$ thì trong $a,b,c,d$ luôn có số chia hết cho 3 không thoả mãn nên $(a,b,c,d)=(a,a+2,a+6,a+8)$. Khi này $a+b+c+d=4a+16$.
Dễ dàng chứng minh được $a+b+c+d$ chia hết cho 4. $(1)$
Nếu $a$ có chữ số tận cùng là 3, 5, 7, 9 thì trong $a,b,c,d$ sẽ tồn lại số chia hết cho 5 không thoả mãn nên $a$ có chữ số tận cùng là 1. Khi đó $4a+16\equiv 4.1+16\equiv0 \pmod 5$ hay $a+b+c+d$ chia hết cho 5. $(2)$
Nếu $a$ chia 3 dư 1 thì $b=a+2$ chia hết cho 3 không thoả mãn nên $a$ chia 3 dư 2. Khi đó $4a+16\equiv 4.2+16\equiv0 \pmod 3$ hay $a+b+c+d$ chia hết cho 3. $(3)$
Từ $(1),(2),(3)$ suy ra $a+b+c+d$ chia hết cho 60.