Ta sẽ chứng minh:$ \sum \frac{ab}{a+b}\leq \frac{3}{2}.\frac{ab+bc+ac}{a+b+c}$
Thật vậy:$\sum \frac{ab}{a+b}\leq \frac{3}{2}.\frac{ab+bc+ac}{a+b+c}\Leftrightarrow (a+b+c)\left ( \sum \frac{ab}{a+b} \right )\leq \frac{3}{2}(ab+bc+ac)$
$\Leftrightarrow \sum \frac{1}{a+b}\leq \frac{1}{2}\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )$ (luôn đúng)
$ \Rightarrow \sum \frac{ab}{a+b}\leq \frac{3}{2}.\frac{ab+bc+ac}{a+b+c}\leq \frac{3}{2}$
Dấu "=" xảy ra $\Leftrightarrow a=b=c=1$ (thỏa mãn)
- ThienDuc1101 và William Nguyen thích