Mình nghĩ câu 53 là "cho $x;y;z \neq 0$ thỏa mãn $\frac{x^2+y}{y^2}=\frac{y^2+z}{x^2}=\frac{z^2+x}{z^2}=2$...." nhỉ bạn.
53)Ta có $\frac{a}{m}+\frac{b}{m^2}+\frac{c}{m^3}=m\Rightarrow \frac{2a}{1+\sqrt{5}}+\frac{4b}{(1+\sqrt{5})^2}+\frac{8c}{(1+\sqrt{5})^3}=\frac{\sqrt{5}+1}{2}\Leftrightarrow (2c+3a+b-7)+\sqrt{5}(a+b-3)=0$ (1)
Vì $a,b,c \in \mathbb{Z}$ nên để thỏa mãn $(1)$ thì $\left\{\begin{matrix} & 3a+b+2c=7\\ & a+b=3 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} & b=3-a\\ & c=2-a \end{matrix}\right.$
Vậy $S=2a+b+c=2a+3-a+2-a=5$
- Leonguyen, Hahahahahahahaha và phomacsudoi thích