Đến nội dung

HaiDangPham

HaiDangPham

Đăng ký: 09-04-2023
Offline Đăng nhập: 07-12-2023 - 12:52
*****

Trong chủ đề: $\frac{xy}{z}+\frac{yz}...

03-12-2023 - 13:49

\begin{align*}VT-VP &=x^2(\frac{y}{z}-1)+y^2(\frac{z}{x}-1)+z^2(\frac{x}{y}-1) \\ &=\frac{x^2(y-z)}{z}+\frac{y^2(z-x)}{x}+\frac{z^2(x-y)}{y}\\ &\geq\frac{x^2(y-z)}{x}+\frac{y^2(z-x)}{x}+\frac{z^2(x-y)}{x}\\ &=\frac{x^2(y-z)+y^2(z-x)+z^2(x-y)}{x} \\ &=\frac{(x-y)(x-z)(y-z)}{x}\geq 0 \end{align*}

Do đó $$\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\geq x^2+y^2+z^2 $$

(mà đề bài phải là $x\geq y\geq z>0$ mới đúng chứ)

 

Cảm ơn bạn Duc3290 đã góp ý điều kiện bài toán. Mình đã sửa lại. Lời giải bạn cũng rất hay. 

 

Mình đã viết lại Latex cho chứng minh của bạn. Với những chuỗi đánh giá bất đẳng thức dài, ta nên xuống và căn lề để tránh tràn màn hình. Bạn ấn vào Trả lời để xem câu lệnh cụ thể sau nhé:   

\begin{align*} \end{align*}

Trong chủ đề: $\frac{xy}{z}+\frac{yz}...

01-12-2023 - 18:55

BÀI TOÁN 5. Giả sử $ x\geq y \geq z > 0$. Chứng minh $$\frac{x^2y}{z}+ \frac{y^2z}{x}+\frac{z^2x}{y} \geq x^2+y^2+z^2.$$


Trong chủ đề: $\frac{xy}{z}+\frac{yz}...

28-11-2023 - 14:11

BÀI TOÁN 4.

Cho các số thực dương $a, b, c$. Chứng minh rằng $$ \frac{a}{(b+c)^2}+\frac{b}{(c+a)^2}+\frac{c}{(a+b)^2} \geq \frac{9}{4(a+b+c)}.$$


Trong chủ đề: $\frac{xy}{z}+\frac{yz}...

27-11-2023 - 18:49

Hi vọng có thể tìm được cách giải nữa cho Bài toán 3. 


Trong chủ đề: $\frac{xy}{z}+\frac{yz}...

27-11-2023 - 09:57

BÀI TOÁN 3.

Cho các số dương $a, b, c$ thoả mãn điều kiện $a+b+c=3$. Chứng minh bất đẳng thức $$\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2} \geq \frac{3}{2}.$$