Còn đây là đáp án trong đề Cầu Giấy.
Ta có: $P=a(3+b)+abc\leq \frac{(a+3+b)^2}{4}+abc=\frac{(7-c)^2}{4}+abc$
$\Rightarrow P\leq \frac{c^2+2(2ab-7)c+49}{4}=\frac{f(c)}{4}$
Khi đó $f(c)$ là một hàm số bậc hai với hệ số dương. Dễ dàng chứng minh với $c\in \left [ 0 ;4\right ]$ thì $maxf(c)=max\left \{ f(0);f(4) \right \}$
Ta có $f(0)=49$ và $f(4)=9+8ab\leq 9+2(a+b)^2=9+2(4-c)^2\leq 41$
$\Rightarrow maxf(c)=max\left \{ f(0);f(4) \right \}=49$
$\Rightarrow P_{max}=\frac{49}{4}\Leftrightarrow \left\{\begin{matrix} a=\frac{7}{2}\\b=\frac{1}{2} \\c=0 \end{matrix}\right.$
P/S: Tiện bạn Bảo bạn có thể xử lí tiếp hiệu được không?
MPU
Thống kê
- Nhóm: Thành viên mới
- Bài viết: 3
- Lượt xem: 215
- Danh hiệu: Lính mới
- Tuổi: Chưa nhập tuổi
- Ngày sinh: Chưa nhập ngày sinh
-
Giới tính
Bí mật
0
Trung bình
Công cụ người dùng
Bạn bè
MPU Chưa có ai trong danh sách bạn bè.
Lần ghé thăm cuối
Trong chủ đề: Tìm min của $P=3a+ab+abc$
Hôm qua, 23:29
- Diễn đàn Toán học
- → Đang xem trang cá nhân: Bài viết: MPU