Đến nội dung

hxthanh

hxthanh

Đăng ký: 30-10-2010
Offline Đăng nhập: Riêng tư
****-

Trong chủ đề: Đề thi chọn đội tuyển Olympic quốc tế (TST) năm 2024

27-03-2024 - 16:28

Đề thi chọn đội tuyển Olympic quốc tế năm 2024


Thời gian: 270 phút



Ngày thi thứ hai: 27/03/2024

Bài 4. Cho số thực $\alpha\in (1;+\infty)$ và đa thức hệ số thực $P(x)$ có bậc $24$, đồng thời hệ số cao nhất và hệ số tự do đều là $1$. Giả sử rằng $P(x)$ có $24$ nghiệm thực dương không quá $\alpha$. Chứng minh rằng
$$\left|P(1)\right|\le \left(\dfrac{19}{5}\right)^5(\alpha-1)^{24}.$$

Bài 5. Cho tam giác $ABC$ nhọn, không cân nội tiếp đường tròn $(O)$. Đường tròn nội tiếp $(I)$ của tam giác $ABC$ tiếp xúc với các cạnh $BC, CA, AB$ theo thứ tự tại $D, E, F$. Tia $EF$ cắt đường tròn $(O)$ tại điểm $M$, tiếp tuyến tại $A$ và $M$ của $(O)$ cắt nhau ở $S$, tiếp tuyến tại $B$ và $C$ cắt nhau ở $T$. Giả sử $IT$ cắt $OA$ tại $J$. Chứng minh rằng:
$$\angle ASJ =\angle TSI.$$

Bài 6. Cho đa thức $P(x)$ hệ số nguyên, khác hằng. Tìm tất cả đa thức $Q(x)$ hệ số nguyên thoả mãn điều kiện: với mọi số nguyên dương $n$, tồn tại đa thức $R_n(x)$ có hệ số nguyên sao cho
$$Q(x)^{2n}-1=R_n(x)(P(x)^{2n}-1).$$

Nguồn: Hướng tới Olympic Toán VN (nhóm facebook)


Trong chủ đề: Tính số nghiệm nguyên của : $x_1+x_2+...+ x_9+x_{10}=n $

26-03-2024 - 13:06

Đúng rồi, biểu thức của em mới chính xác!
Vì khi viết ${n+9-11k\choose 9}$ thì kể cả $n+9-11k<0$ thì nó vẫn xác định (và khác 0)

Trong chủ đề: Tính số nghiệm nguyên của : $x_1+x_2+...+ x_9+x_{10}=n $

25-03-2024 - 23:17

$\newcommand{fl}[1]{\left\lfloor #1 \right\rfloor}$

Xin phép dự đoán (không phải lời giải) (căn cứ theo phương pháp bù trừ)

$S_n=\sum_{k=0}^{\fl{\frac{n}{11}}}(-1)^k{10\choose k}{n+9-11k\choose 9}$

Một vài kết quả (cần kiểm chứng)


Trong chủ đề: Tìm hệ số của $x^{3n-4}$ trong khai triển : $(x^...

24-03-2024 - 09:38

Sau một thời gian lên bờ xuống ruộng, xin trình bày lời giải của một học sinh có chỉ số IQ không cao, chính là em đây! ^_^
$$\begin {align}
[x^{3n-4}]&(1+x+x^2+x^4)^n=[x^{3n-4}]x^{3n}(x^{-3})^n(1+x+x^2+x^4)^n\\&=[x^{3n-4}]x^{3n}(x^{-3}+x^{-2}+x^{-1}+x)^n\\
&=[x^{-4}](x^{-3}+x^{-2}+x^{-1}+x)^n\\
&=[y^4](y^3+y^2+y+y^{-1})^n\\
&=[y^4](y^{-1}+y+y^2+y^3)^n\\
&=[y^4]((y^{-1}+1+y+y^2+y^3)-1)^n\\
\displaystyle &=\sum_{q=2}^n (-1)^{n-q} \binom{n}{q}[y^4](y^{-1}+1+y+y^2+y^3)^q\\
&=\sum_{q=2}^n (-1)^{n-q} \binom{n}{q} [y^4]\dfrac{(1-y^5)^q}{y^q(1-y)^q}\\
\displaystyle &=[y^4]\sum_{q=2}^n \sum_{r=0}^q\sum_{s=0}^\infty
(-1)^{n-q+r}\binom{n}{q}\binom{q}{r}\binom{q-1+s}{q-1}y^{s+5r-q}\\
&\boldsymbol {\displaystyle =\sum_{q=2}^n \sum_{r=0}^q
(-1)^{n-q+r}\binom{n}{q}\binom{q}{r}\binom{3+2q-5r}{q-1}}\end{align} $$
Chú thích :
$(4): \text{Đặt $y=x^{-1}$}$
$(7): \text {do $[y^4](y^{-1}+1+y+y^2+y^3)^0=[y^4](y^{-1}+1+y+y^2+y^3)^1=0$}$
$(10): \text {do $ s=q-5r+4\ge 0$ }$
Thử vài giá trị $n$ :
$n=2:\, \displaystyle \sum_{r=0}^2
(-1)^{r}\binom{2}{r}\binom{7-5r}{1}=7-2\cdot 2=3$
$n=3:\,\displaystyle \sum_{q=2}^3 \sum_{r=0}^q
(-1)^{3-q+r}\binom{3}{q}\binom{q}{r}\binom{3+2q-5r}{q-1}$
$\displaystyle =\sum_{r=0}^3(-1)^{r}\binom{3}{r}\binom{9-5r}{2}
-3\sum_{r=0}^2 (-1)^{r}\binom{2}{r}\binom{7-5r}{1}$
$=(36-3\cdot 6)-3(7-2\cdot 2)=9$

Một bài làm rất công phu và nói lên nhiều thứ cần học hỏi! Mình cũng đã thử sức với bài này và cũng ra được một biểu thức tổng kép cồng kềnh rất khó xử lý rút gọn. Có thể bài toán này không tồn tại một kết quả đẹp được.

Trong chủ đề: Chia $6n$ viên bi vào $4$ hộp

21-03-2024 - 19:25

$\newcommand{\fl}[1]{\left\lfloor #1 \right\rfloor}$
Bài này mình tình cờ đọc được trong một paper nào đó không nhớ rõ lắm. Trong đó họ ký hiệu $\|1,2,3,6;n\|$ để chỉ số nghiệm nguyên không âm của phương trình $x_1+2x_2+3x_3+6x_6=n$
Theo như công thức khủng bố trong đó thì mình tóm tắt lại thành:
$$ \|1,2,3,6;n\| = \fl{\dfrac{2n^3+36n^2+191n+8n(n+2\!\!\mod 4)-8n(n\!\!\mod 4)+9n(-1)^n+432}{432}}$$
Hay với $n\equiv 0\pmod 6$ thì
$$=\fl{\dfrac{(n+6)^3}{216}}$$
Và khi thay $n$ thành $6n$ thì ta có đáp án là $\mathbf{(n+1)^3}$