Đến nội dung


Nxb

Đăng ký: 04-11-2011
Offline Đăng nhập: Hôm qua, 22:53
*****

#733596 ICM 2022

Gửi bởi Nxb trong 06-06-2022 - 16:41

Năm nay những ai được dự đoán sẽ đoạt giải Fields ấy nhỉ?

Em chỉ để ý hình học đại số thôi nên một cái tên có thể nghĩ tới là Bhatt. Nhưng Bhatt không được nổi bật như mấy giải Fields trước đó bên hình đại số nên có lẽ giải Fields năm nay sẽ nghiêng về các ngành khác, ví dụ như tổ hợp; hoặc lý thuyết số theo kiểu giải tích, tổ hợp; xác suất; vv… Mấy năm nay giải Fields giống như Oscar vậy, có phụ nữ, người da màu, người châu Á, nhập cư,… Biết đâu do cuộc chiến ở Ukraine mà họ nảy ra ý trao giải cho Viazovska.




#733586 ICM 2022

Gửi bởi Nxb trong 04-06-2022 - 16:04

ICM 2022 mở đăng ký rồi mọi người ạ: https://www.mathunio...irtual-icm-2022 Chắc đây là cơ hội hiếm hoi trong lịch sử mà đại hội tổ chức online, hoặc biết đâu mấy năm nữa ICM sẽ kết hợp livestream ?

Một số tiểu ban mà anh em đại số trên diễn đàn quan tâm:

 

-Lý thuyết số: Lý thuyết số là một trong những nhánh lâu đời nhất của toán học, kích thích sự phát triển của nhiều nhánh khác bao gồm giải tích phức và giải tích p-adic, đại số và hình học đại số..., và nó vẫn đang phát triển mạnh cho đến ngày nay. Nghiên cứu trong lý thuyết số đại số cho đến nay tập trung vào các tính chất cơ bản của các biểu diễn Galois và L-hàm, một mặt có các mối liên hệ sâu sắc với hình học đại số, như được hình dung bởi các giả thuyết của Grothendieck về mô típ, và mặt khác, đối với các biểu diễn của nhóm Lie và các biểu diễn tự đẳng cấu, như được đòi hỏi bởi các giả thuyết của Langlands. Lý thuyết số giải tích, với trọng tâm truyền thống là phân bố của các số nguyên tố, đã trải qua một cuộc hồi sinh lớn trong những năm gần đây, đạt được các lời giải cho các vấn đề tồn tại lâu đời, với các kết nối mới với tổ hợp và xác suất. Do bản chất thường cụ thể của các vấn đề số học, lý thuyết số tính toán cũng rất tích cực và có mối liên hệ chặt chẽ với khoa học máy tính.

 

-Hình học đại số và hình học phức: Đại số, số học và hình học giải tích nằm ở giao lộ của nhiều bước phát triển trong toán học. Nó có mối liên hệ đặc biệt chặt chẽ với Đại số, Lý thuyết số, Tôpô, Hình học Vi phân và Vật lý Toán. Nhiều sự phát triển hiện đại trong lĩnh vực này chịu ảnh hưởng sâu sắc của các lĩnh vực liên quan kể trên và cũng ảnh hưởng ngược lại đến chúng. Các công cụ cần thiết để làm việc trong lĩnh vực này rất đa dạng, từ giải tích phức đến trường hữu hạn và các kỹ thuật p-adic. Một số ý tưởng cơ bản trong chủ đề này rất sâu sắc, chẳng hạn như mô típ, không gian mô đun, hoặc phương pháp đi từ số phức đến trường hữu hạn và ngược lại. Trong những năm gần đây, đã có một số tiến bộ ngoạn mục trong hình học song hữu tỷ, lý thuyết không gian mô đun, D-mô đun và lý thuyết tinh thể đồng kiểu, hình học diophantine, trong nghiên cứu hình học của các phạm trù dẫn xuất, hình học liệt kê và trong các câu hỏi có tính mô típ.

 

-Tô pô: Tùy thuộc vào các phương pháp được sử dụng, chủ đề được chia thành Tôpô đại số, Tôpô vi phân và Tôpô hình học. Dưới nhiều dạng khác nhau, nó rất cần thiết cho nhiều lĩnh vực toán học cốt lõi bao gồm Hình học, Số học, Giải tích, Hình học Đại số, Hệ Động lực học và Vật lý Toán, và các phương pháp của nó được sử dụng rộng rãi trong một số ngày càng tăng các lĩnh vực ứng dụng của toán học. Những năm gần đây đã chứng kiến ​​những tiến bộ lớn về một số vấn đề cổ điển trong lý thuyết 3-đa tạp và 4-đa tạp, lý thuyết đồng luân ổn định cân bằng (bất biến Kervaire), và nghiên cứu không gian mô đun. Đồng thời, các lĩnh vực chủ đề mới hơn như lý thuyết nhóm hình học, lý thuyết trường lượng tử tôpô và hình học đại số dẫn xuất đã có những bước phát triển quan trọng định hình nên cảnh quan tôpô. Các chủ đề chính bao gồm lý thuyết đa tạp, lý thuyết đồng luân (bao gồm đồng luân mô típ và K-lý thuyết), ô-pê-ra và các phạm trù chiều cao, lý thuyết Floer và lý thuyết gauge, đa tạp chiều thấp bao gồm lý thuyết nút, không gian mô-đun, đa tạp symplectic và đa tạp tiếp xúc, và các khía cạnh của lý thuyết trường lượng tử.




#733431 Giáo sư Ngô Việt Trung đoạt giải thưởng Tạ Quang Bửu năm 2022

Gửi bởi Nxb trong 12-05-2022 - 02:23

Bài viết của giáo sư Hoa về giáo sư Trung.
 
 

Qui luật và ngẫu nhiên

Như các ngành khoa học khác, một trong những vấn đề trung tâm trong Toán học là đi tìm một hoặc một vài tính chất chung trong số vô vàn những đối tượng có vẻ rất khác nhau. Chẳng hạn, có vô số vòng tròn lớn nhỏ. Ngoài chuyện hình dáng trông giống giống nhau, có vẻ chúng chẳng có gì chung. Ấy thế mà từ lâu loài người đã đoán định rằng tỷ số giữa chu vi và đường kính là như nhau ở tất cả các đường tròn. Mãi đến khi khái niệm giới hạn xuất hiện ở thế kỷ thứ 16 thì điều đoán định đó mới được chứng minh chặt chẽ, và tên gọi số pi cũng như ký hiệu π mới xuất hiện. Việc tìm ra số π chính là đã khám phá ra một qui luật.

 


 File gửi kèm  GS-Ngo-Viet-Trung-anh-1-281x375.jpg   22.79K   5 Số lần tải

Giáo sư Ngô Việt Trung.

 
 
Oái ăm thay, tỷ số π này lại là một số không thể tính chính xác được! Cho đến hiện nay, người ta cũng không biết được các chữ số thập phân của p có xuất hiện theo một qui luật nào không, hay hoàn toàn ngẫu nhiên (theo nghĩa ta không đoán trước được cho đến khi tìm ra nó)? 

 

Qua ví dụ tưởng như đơn giản là số π, ta có thể hiểu được, việc tìm ra qui luật nhiều khi khó khăn và tốn thời gian như thế nào!

 

Một ví dụ cao cấp hơn là việc giải hệ phương trình đa thức (với hệ số trên một trường). Trong trường hợp một biến, sinh viên Toán năm thứ nhất dễ dàng chứng tỏ được dù hệ có rất nhiều, thậm chí vô số phương trình, thì cũng có thể quy về giải mộtphương trình mà thôi. Điều đó không còn đúng khi số biến từ 2 trở lên. Tuy nhiên, vào cuối thế kỉ 19, nhà toán học người Đức D. Hilbert – một nhà toán học nổi tiếng nhất của thế kỷ 20 – đã phát hiện ra một qui luật (và tất nhiên đã chứng minh) là mọi hệ vô hạn đều có thể quy về một hệ gồm hữu hạn phương trình. Chứng minh của ông thời đó rất độc đáo và mới lạ, đến nỗi có người bảo đó không phải là chứng minh toán học, mà là thần học! Nhưng số phương trình ít nhất thì lại có thể rất lớn, tùy thuộc vào hệ cụ thể. Hay nói cách khác, số phương trình tối tiểu của một hệ phương trình đa thức là một số ngẫu nhiên.

 

Lĩnh vực nghiên cứu của giáo sư Ngô Việt Trung là Đại số, trong đó có hai khái niệm vành và idean đóng vai trò cơ bản. Chính nhờ sử dụng khái niệm khá trừu tượng là idean mà Hilbert đã chứng minh được kết quả có thể diễn đạt tương đối sơ cấp nêu trên. Vành được xem xét trong kết quả của Hilbert là một vành đa thức trên trường.

 

Khi có vành đa thức R và một idean I của nó, ta có một vành mới R/I – được gọi là vành thương. Để cho đơn giản, ta hạn chế xét trường hợp được gọi là idean thuần nhất. Một trong những cách nhận biết cấu trúc của vành R/I là thông qua các bất biến bằng số. Một bất biến vào loại quan trọng nhất của vành R/I là độ sâu depth(R/I). Độ sâu càng lớn thì vành đó càng đẹp!

 

Lũy thừa thứ n của I, được ký hiệu là In, là một khái niệm mở rộng khái niệm lũy thừa an thông thường của một số. Người ta nhận thấy, khi cố định I, độ sâu depth(R/In) có vẻ rất ngẫu nhiên, theo nghĩa phụ thuộc vào việc n. Vì vậy, kết quả của một nhà toán học Thụy Sĩ tên là M. Brodmann đưa ra năm 1979 nói rằng khi n đủ lớn, độ sâu depth(R/In) là một hằng số (không phụ thuộc n), đã tạo ra một sự ngạc nhiên trong giới chuyên môn. Tính chất này được gọi là tính ổn định tiệm cận. Không những thế, chứng minh qui luật này khá đơn giản, nhưng bản thân kết quả lại có nhiều ứng dụng. Vì vậy, bài báo chứa kết quả tuy đơn giản đó đã có 170 trích dẫn trên google scholar, tính đến thời điểm bài viết này – một số trích dẫn khá lớn trong Toán lý thuyết. Tuy nhiên người ta không hình dung được trước khi ổn định thì dãy số depth(R/I), depth(R/I2),… có dáng điệu như thế nào? Một giả thuyết phát biểu năm 2005 của hai nhà toán học Đức và Nhật nói rằng dãy đó có thể tùy ý, miễn nó ổn định tiệm cận. Nói cách khác, khoảng đầu của dãy này hoàn toàn ngẫu nhiên. Cách đây năm năm, giáo sư Ngô Việt Trung cùng ba đồng nghiệp Việt Nam khác đã giải quyết được giả thuyết đó, và công trình mới được công bố chính thức năm 2021. Khoảng thời gian từ khi phát hiện ra qui luật của độ sâu cho tới khi chứng minh được tính ngẫu nhiên khoảng đầu của dãy số độ sâu là hơn 40 năm!

 

Đối tượng mà giáo sư Ngô Việt Trung nghiên cứu cùng tiến sĩ Nguyễn Đăng Hợp trong công trình “Depth functions of symbolic powers of homogeneous ideals” (Các hàm độ sâu của lũy thừa hình thức của idean thuần nhất) phức tạp hơn nhiều so với lũy thừa In. Đó là lũy thừa hình thức I(n) – có liên quan chặt chẽ với lũy thừa thông thường, nhưng lại rất khác. Đây là một khái niệm xuất phát từ Hình học đại số. Nó được chú ý đặc biệt từ khi đóng vai trò quan trọng  trong việc xây dựng phản ví dụ cho Bài toán Hilbert thứ 14 nổi tiếng do Nagata xây dựng năm 1958. Thế nhưng, trái với In, việc tính cũng như nghiên cứu I(n) rất khó khăn. Có nhiều câu hỏi có vẻ đơn giản, nhưng vẫn còn mở liên quan đến lũy thừa hình thức. Cho đến cách đây ít năm, cho dù phỏng đoán là không, nhưng người ta vẫn không biết chắc chắn là depth(R/I(n)) không ổn định tiệm cận. Trong trường hợp đặc biệt, khi I là idean đơn thức – một loại idean đặc biệt – thì từ một kết quả của giáo sư Ngô Việt Trung và hai đồng nghiệp nước ngoài công bố năm 2007, có thể suy ra khi n đủ lớn, dãy depth(R/I(n)) ổn định tuần hoàn – tức rất gần với kết quả của Brodmann. Tuy gần, nhưng vẫn khác xa. Nếu đúng là khác thì thật thú vị. Nhưng biết đâu trên thực tế, với idean đơn thức, depth(R/I(n)) vẫn ổn định tiệm cận? Chẳng hạn, nếu I là idean đơn thức đặc biệt, gọi là idean không chứa bình phương, năm 2010, tôi cùng với tiến sĩ Trần Nam Trung đã chứng minh được đúng là depth(R/I(n)) ổn định tiệm cận. Từ đó, ý nghi ngờ cho rằng với idean đơn thức, depth(R/I(n)) vẫn ổn định tiệm cận, lại tăng lên. 

Công việc tìm ra qui luật hay khẳng định tính ngẫu nhiên rất gian truân, nhiều khi là đứng giữa ranh giới giữa có và không. Chẳng hạn cũng là vấn đề ổn định tiệm cận của độ sâu nêu trên, nếu chỉ xét lớp idean đơn thức không chứa bình phương vừa nói, thì cùng với phó giáo sư Nguyễn Công Minh ở ĐH Sư phạm Hà Nội, giáo sư Ngô Việt Trung năm 2011 đã chứng minh rằng nếu depth(R/I(3)) đạt giá trị lớn nhất, thì depth(R/I(n)) cũng đạt giá trị lớn nhất với mọi n > 3. Dựa trên công trình đó, năm 2012, cùng với nhà toán học Nhật Bản N. Terai, ông đã chứng minh kết quả tương tự cho độ sâu với lũy thừa thông thường. Cả hai công trình đó đã được đăng trên tạp chí Advances in Mathematics – một tạp chí có thứ hạng rất cao, thường xuyên có mặt trong top 20. Như vậy, với việc thêm điều kiện, tính ngẫu nhiên bị biến mất. Thay vào đó là một qui luật mới được phát hiện.

 

Trong công trình “Depth functions of symbolic powers of homogeneous ideals”, một số lớp idean đơn thức mới có  depth(R/I(n)) ổn định tiệm cận đã được tìm ra. Đó là những kết quả hay, và với chỉ mình chúng cũng có thể đăng được ở tạp chí tốt, nhưng không thể đăng được ở tạp chí đỉnh cao.
Kết quả chính có ý nghĩa quan trọng nhất và thú vị nhất của công trình này là đã chứng minh được mọi dãy số tuần hoàn ổn định tiệm cận đều có thể là dãy depth(R/I), depth(R/I(2)), depth(R/I(3), …. của một idean  đơn thức I nào đó. Dãy số vô hạn  a1, a2,… được gọi là tuần hoàn ổn định tiệm cận chu kì t, nếu khi n đủ lớn thì a= an+t = an+2t = ….  Nếu lấy chu kì tuần hoàn từ 2 trở lên, hệ quả trực tiếp của kết quả này nói rằng độ sâu depth(R/I(n)) không thoả mãn qui luật ổn định tiệm cận như Brodmann đã chỉ ra với lũy thừa thông thường. Đó là một điều được giới chuyên môn dự đoán từ lâu, nhưng bây giờ mới được kiểm chứng! Nhưng phần khó khăn hơn rất nhiều và khó tưởng tượng hơn rất nhiều là công trình này đã chứng minh được tính ngẫu nhiên hoàn toàn của dãy depth(R/I), depth(R/I(2)), depth(R/I(3),…. Bản thân công trình cũng đặt ra vấn đề mới: Hãy chứng tỏ (hay phủ nhận) rằng tồn tại idean I có depth(R/I(n)) không tuần hoàn ổn định tiệm cận. Chắc chắn đây là một bài toán rất khó – và chưa hiểu cách tiếp cận sẽ như thế thế nào.

 

Việc xây dựng được idean I thích hợp đòi hỏi những ý tưởng sâu sắc tổng hợp từ nhiều chuyên ngành khác nhau: Đại số giao hoán, Hình học đại số và tổ hợp. Kỹ thuật chứng minh cần những kiến thức sâu sắc trong Đại số giao hoán và sự kết hợp tài tình với những tính toán tổ hợp phức tạp, cũng như vận dụng thành thạo qui hoạch nguyên – một chuyên ngành có vẻ khá xa Đại số giao hoán. Chính vì vậy mà công trình đã được nhận đăng trong tạp chí Inventiones Mathematicae. Đây là một trong 2-3 tạp chí có uy tín nhất trong Toán học. Đây cũng là lần đầu tiên có một công trình thuần Việt được đăng trong một tạp chí lớn như vậy. Hoàn toàn thuần Việt theo nghĩa: cả hai tác giả đều là người Việt Nam và từ khi hình thành đến khi kết thúc, hoàn toàn được thực hiện trong nước. Nó còn đặc biệt ở chỗ, hiếm lắm mới có bài báo chuyên ngành Đại số giao hoán được đăng trên tạp chí Annals of Mathematics hay tạp chí Inventiones Mathematicae nêu trên.
 



GS-Ngo-Viet-Trung-anh-2-515x335.jpg

Năm 2017, cùng giáo sư Nguyễn Tự Cường và giáo sư Lê Tuấn Hoa, giáo sư Ngô Việt Trung được trao giải thưởng Hồ Chí Minh đợt V về KH&CN với cụm công trình “Các bất biến và cấu trúc của vành địa phương vành phân bậc”. Nguồn: Vietnamnet

 


Đi tìm qui luật là một trong những sở trường của giáo sư Ngô Việt Trung. Ngay từ khi còn là sinh viên đại học cách đây gần 50 năm, cùng với bạn học Nguyễn Tự Cường – bây giờ là giáo sư – và một tiến sĩ trẻ người Đức, ông đã phát hiện ra một lớp vành mà hiệu của hai bất biến có thể thay đổi khá tuỳ tiện đối với họ tuy vô hạn, nhưng chiếm một lượng nhỏ (theo một nghĩa nào đó), nhưng lại là hằng số với số còn lại. Đó là lớp vành được biết đến dưới tên gọi Cohen-Macaulay suy rộng. Mãi tới năm 1978, bài báo đó mới được đăng, và đã kích hoạt nghiên cứu của hàng trăm bài báo của nhiều nhà toán học trên thế giới (299 trích dẫn trên google scholar). Một ví dụ khác là nghiên cứu chỉ số chính qui Castelnuovo-Mumford, một bất biến khác khó hơn nhiều so với độ sâu. Vào năm 2020, cùng với hai đồng nghiệp người Mỹ và Đức, ông đã chứng minh được khi n đủ lớn, bất biến đó của In là một hàm tuyến tính. Đương nhiên bài này đã được đăng trên một tạp chí rất uy tín và được trích dẫn nhiều (248 trích dẫn trên google scholar). 

 

Đó chỉ là vài trong số nhiều kết quả khác của ông được nhiều nhà toán học quan tâm. Tuy nhiên, trước khi có bài báo ở tạp chí đỉnh cao, không có gì chắc chắn để khẳng định trước sau ông cũng sẽ có bài đăng ở đó. Xét về góc độ này thì việc có được bài đăng ở đấy như là một sự ngẫu nhiên, hay chí ít là một sự gặp may. Nhưng nếu xét từ cả quá trình làm việc và công bố đồ sộ của ông thì lại có dáng dấp như một qui luật. Chí ít thì có thể khẳng định: trong số người nghiên cứu Đại số ở Việt Nam, nếu có ai đó đăng được bài ở một trong hai tạp chỉ đỉnh cao nói trên, thì người đầu tiên phải là ông! (Trước ông, năm 1976 có giáo sư Nguyễn Hữu Anh có bài đăng ở Annals of Mathematics, khi làm việc ở Mỹ).

 

Giáo sư Ngô Việt Trung là nhà toán học hàng đầu của Việt Nam, đã được trao tặng nhiều giải thưởng lớn. Ông được bầu làm viện sĩ Viện Hàn lâm Khoa học các nước thế giới thứ 3 (TWAS) năm 2000 khi mới 47 tuổi. Năm 2009, Giải thưởng Nhân tài Đất Việt lần đầu tiên được mở rộng sang lĩnh vực khoa học tự nhiên, và ông là người được trao Giải thưởng trong lĩnh vực Toán học. Đặc biệt, năm 2017, ông được trao giải thưởng Hồ Chí Minh đợt V về khoa học và công nghệ với tư cách là chủ trì nhóm nghiên cứu gồm ba thành viên. 

 

Ông đã giữ nhiều chức trách trong ngành Toán: Tổng biên tập tạp chí Acta Mathematica Vietnamica (16 năm, từ 1991 – 2007), Viện trưởng Viện Toán học (2007 – 2013), Chủ tịch Hội đồng ngành Toán của Quỹ NAFOSTED (nhiều năm), Chủ tịch Hội Toán học Việt Nam (từ 2018). Tuy rất bận bịu với những công việc hành chính hay các hoạt động khoa học, nhưng ông luôn luôn đặt nhiệm vụ nghiên cứu ở vị trí số một, và dành phần lớn thời gian cho nó. Công trình “Depth functions of symbolic powers of homogeneous ideals” được hoàn thành và đăng trên tạp chí hàng đầu của Toán khi ông là đương kim Chủ tịch Hội Toán học quả thực càng có ý nghĩa khích lệ thế hệ trẻ phấn đấu nghiên cứu để ngày càng có nhiều công trình xuất sắc.
Thực ra, giáo sư Ngô Việt Trung là người thể hiện có năng khiếu Toán học rất sớm. Ông là người đã đạt Giải Nhất lớp 10 kì thi Học sinh giỏi toàn miền Bắc về Toán. Thời đó, kì thi Học sinh giỏi toàn miền Bắc chỉ tổ chức cho Toán và Văn, trao rất ít giải, kể cả giải khuyến khích thường không quá 10, và nhiều năm không trao giải Nhất (trước năm 1975, tôi chưa từng nghe có năm nào trao hai giải nhất và tôi nghĩ là không). Do vậy, những người đạt giải khi đó được các bạn cùng trang lứa nhớ tên rất lâu. Rất may là thời đó thông tin không nhiều như bây giờ, nên người ta biết đến tên tuổi ông như một nhà khoa học thành đạt, chứ không phải nhờ dư âm từ thời học sinh! 

 

Sau khi tốt nghiệp đại học, ông được chuyển tiếp nghiên cứu sinh và bảo vệ tiến sĩ năm 1978. Năm 1983, ông đã bảo vệ được luận án tiến sĩ khoa học khi mới 30 tuổi. Cũng năm đó, Đoàn Thanh niên có tổ chức triển lãm thành tựu khoa học, công nghệ và sản xuất của thanh niên tại Cung Văn hóa thiếu nhi Hà Nội. Đích thân cố Tổng Bí thư Lê Duẩn đã đến thăm để nói lên tầm quan trọng của triển lãm. Các sản phẩm công, nông nghiệp thì nhiều, nhưng theo tôi nhớ thì về nghiên cứu lý thuyết, chỉ có của tiến sĩ Ngô Việt Trung với 13 công bố ở nước ngoài và 2-3 tiền ấn phẩm. Đó là những con số rất ấn tượng thời đó. Tôi khi đó là lính mới của Viện, nên được giao trực “gian hàng” của Viện Toán. Cố Tổng Bí thư Lê Duẩn đã dừng lại ngắm nghía gian hàng khoảng một phút!

 

Gợi lại một số kỷ niệm trước đây để nói rằng, thành công của giáo sư Ngô Việt Trung là có cơ sở và là kết quả của một quá trình làm việc bền bỉ, lâu dài, không bao giờ tự hài lòng, bất chấp tuổi tác ngày càng cao hay công việc bận bịu, luôn tìm cách chinh phục những đỉnh cao mới. Từ rất lâu, nghiên cứu khoa học đã ngấm vào máu của ông.□

Theo Tia Sáng




#733385 Topic yêu cầu tài liệu Olympic

Gửi bởi Nxb trong 05-05-2022 - 16:01

 

Bài 1 VMO 2019 hay đấy chứ nhỉ, thấy style hơi lạ, giống như một bài tập bình thường của Toán Đại cương hơn là một bài Olympic. Mà anh lại thích kiểu ra đề như vậy, để học sinh ôn luyện những kiến thức nền tảng sau này cần dùng thì tốt hơn là luyện tricks.
Những dạng bài như thế này thì chắc là không có trong sách Olympic thông thường đâu mà đúng là cần tới sách Toán Đại cương như cuốn Baby Rudin ở trên (tiếng Việt chắc cũng có, Giải Tích của Trần Đình Long?)

Có lẽ là những bài toán kiểu này không có trong sách olympic thật. Nhưng em gửi cuốn sách như kiểu Rudin kia vì để làm những bài kiểu như thế chỉ cần để học cách diễn đạt chính xác trực giác của mình. Có lẽ đó là yêu cầu tối thiểu trong môn giải tích. Em nghĩ những bài toán trong Rudin còn mẹo và khó hơn thế này. Còn bài tập trong sách của Trần Đình Long thì cũng ở mức trung bình thôi anh ạ.




#733370 Topic yêu cầu tài liệu Olympic

Gửi bởi Nxb trong 04-05-2022 - 00:05

Co anh chị nào có tài liệu nào về giải tích để thi VMO không ạ; ý em là thuần giải tích giống như bài 1 VMO 2019 ấy ạ

https://web.math.ucs.../122A/rudin.pdf




#733351 $f:\mathbb{Z}\to \mathbb{Z}$ tho...

Gửi bởi Nxb trong 01-05-2022 - 04:44

Câu này có bẫy gì không nhỉ? Viết lại $f(n)$ thành dạng tổng telescope là xong.
 

Bạn cứ viết lời giải ra, mình cũng không hiểu ý bạn là gì.




#733334 Việt Nam TST 2022

Gửi bởi Nxb trong 29-04-2022 - 15:45

Bài 1:

\begin{equation} f( \varphi (x)+f(y))=y+ \varphi (f(x)),\forall x,y\in\mathbb R\end{equation}

Dễ thấy $f$ là song ánh.

Tồn tại $a$ sao cho $f(a)=0$.

Thay $x=0,y=a$ vào (1) ta có $f(0)=a+\varphi(f(0))$.

Thay $x=a;y=0$ vào (1) ta có $f(\varphi(a)+f(0))=0=f(a)\Leftrightarrow  \varphi (a)+f(0)=a$.

Mặt khác $\varphi(f(0))\geq 0$ và $\varphi(a)\geq 0$ nên $f(0)=a\Rightarrow a=0\Rightarrow f(0)=0$.

Từ đó thay $x=0$ vào (1) ta có $f(f(y))=y,\forall y\in\mathbb R$.

Thay $y=0$ vào (1) ta có $f(\varphi(x))=\varphi(f(x)),\forall x\in\mathbb R$.

Do đó ta có thể viết lại phương trình hàm đã cho thành $f(\varphi(x) + f(y))=f(f(y))+f(\varphi(x)),\forall x,y\in\mathbb R$.

Mà $f$ là toàn ánh nên $f(\varphi(x)+y)=f(y)+f(\varphi(x)),\forall x,y\in\mathbb R$.

Đến đây nên xử lí như thế nào nhỉ :(

Ta có thể giải tiếp như sau. Do $\phi$ có ảnh là toàn bộ tập số thực không âm nên phương trình cuối có thể viết lại thành $f(x+y)=f(x)+f(y)$ với $x$ không âm và $y\in \mathbb{R}.$ Do đó, $f(x)+f(-x)=f(0)=0$ hay là $-f(x)=f(-x)$ với $x\geq 0.$ Với $x<0$ thì $f(x)=f(-(-x))=-f(-x).$ Như vậy $f(-x)=-f(x)$ với mọi $x\in \mathbb{R}$ và $f(x+y)=f(x)+f(y)$ với mọi $x,y \in \mathbb{R}.$ Điều này và $f(f(y))=y$ dẫn tới $f(x)=\pm x$ với mọi $x\in \mathbb{Q}.$ Do $f(\phi(x))=\phi(f(x))$ nên $f(x)\geq 0$ với $x\geq 0.$ Từ đó ta có $f(x)=x$ với $x\in \mathbb{Q}.$

 

Với mọi $x\in \mathbb{R}$, chọn một dãy $\{x_n\}$ các số hữu tỷ sao cho $x_n\to x.$ Phương trình $f(f(y))=y$ dẫn tới $f(x_n)\to x$. Do đó phương trình $f(\phi(x))=\phi(f(x))$ và tính liên tục của hàm $\phi$ dẫn tới $f(\phi(x))=\phi(x)$ và do $\phi$ có ảnh là $\mathbb{R}_{\geq 0}$ nên $f(x)=x$ với $x\geq 0.$ Do $f(-x)=-f(x)$ nên ta kết luận $f(x)=x$ với mọi $x\in \mathbb{R}.$

 

Nhận xét: công thức cụ thể của $\phi$ không đóng vai trò nào cả, có thể lây $\phi$ tổng quát hơn chẳng hạn $\phi$ liên tục có ảnh là toàn bộ $\mathbb{R}_{\geq 0}.$ Và lời giải $f(x)=x$ lại là một lời giải vô nghĩa, vì cách mô tả tốt nhất hàm $f(x)=x$ chính là hãy nói rằng nó là hàm $x$. Mặt khác hoàn toàn có thể hỏi một nhà toán học nào đó ở Viện toán học hoặc trường Tự nhiên để kiếm một bài toán không nhằm đưa ra lời giải mà để khảo sát các tính chất của hàm đó thông qua phương trình hàm. Tuy nhiên bộ giáo dục không hề tôn trọng các nhà khoa học, giống như việc tổ chức kỳ thi trắc nghiệm mà cộng đồng toán học Việt Nam đã phản đối kịch liệt.




#733267 Học và học lại ngành của bạn

Gửi bởi Nxb trong 16-04-2022 - 05:51

Thế là anh không bắt nhịp bọn này rồi, bọn Pháp cứ phải chém gió giữa giờ, giờ học, giờ ăn, cả lúc đi về. Hồi năm ba em học lý thuyết Galois ở trường, thầy (you know who) bảo lớp em học chả khác gì bọn Pháp, đại khái là hay đi muộn, tài tử, lại còn hay chém gió. Không như bọn Đức, làm cái gì chuẩn chỉ, đúng giờ, trưa nghỉ còn không hút thuốc uống cafe. Chả biết có phải em bị ngấm cái thói đấy vào máu không, nhưng giờ làm gì ngày cũng phải hai cốc cafe chém gió, ngắm trời đất chém gió toán (nếu có bạn) xong mới làm việc được.

Anh không nói rõ nên chắc Bằng tưởng tượng nhầm rồi =)). Hơn nữa nếu suy nghĩ kỹ thêm thì những việc chú nói đề cập ở trong lớp như trên thì anh và có lẽ hầu hết sinh viên tự nhiên đều như vậy :3. Còn thói quen kia thì anh nghĩ cái thói quen đó là của riêng chú chứ không khái quát liên quan gì đến người Pháp được đâu, dễ nhất chú hỏi bạn chú có ngắm trời đất không, và tìm một người kỵ cafe làm toán ở Pháp thì cũng không khó. Anh nghĩ cũng đừng nên tin những khái quát người Đức như thế này thế nọ, vì anh nghĩ nhưng định kiến như vậy khả năng cao là sai bét (chẳng hạn chú có thể lên search các video quảng cáo của viện Bonn).

 

Anh không muốn nói rõ thêm việc la cà mà bà giáo bảo anh làm vì không cần thiết. Chú cần hiểu ai đi làm thì tự người đó có lựa chọn cá nhân để sao cho công việc của họ tốt nhất. Ví dụ ở chỗ anh có rất nhiều giáo sư nổi tiếng không lên lab bao giờ, như vậy họ không bao giờ có cơ hội làm những việc mà chú nói. Chả lẽ vì vậy họ không phải người Pháp! Bản thân anh thấy anh làm tốt nhất là khi nhận lương Pháp rồi về Việt Nam mà làm =)). Anh chỉ lấy ví dụ qua để chú thấy là đôi khi những bài đăng mà nội dung toán học của nó không được mọi người quan tâm lắm cũng không phải vấn đề quá lớn và nó có thể nói tạo ra không gian mới cho diễn đàn nhằm động viên chú viết sau khi chú hỏi anh có cần hay không thôi. Khi anh đọc bài của chú cũng chỉ có thời gian đọc hiểu một hai định nghĩa thôi vì anh còn bận làm cái của anh, và nó không hề có ích gì ngay lập tức cho anh cả, nhưng tất nhiên ta không chỉ sống chỉ nhằm đào cho ra bằng được kết quả =)), đấy là một cái anh học được từ thầy hướng dẫn.  

 

Tiện mình note lại thì hôm nay anh nghe một người kể trong condensed mathematics của Scholze có một phiên bản của six operations mà gần đây một học trò của Scholze mở rộng nó cho p-adic rigid spaces. Từ đó anh hơi nghi ngờ là thực sự có ai tìm ra một cơ sở chung cho tất cả các six operations không vì chẳng hạn chả lẽ tất cả đều suy ra đơn giản từ định lý kia Ayoub hay là việc áp dụng định lý đó cũng không tầm thường nên việc nghiên cứu vẫn còn active ? (có thể thử search “six operations arxiv”). Có lẽ Bằng nên giải thích ý của mình đầy đủ hơn.




#733263 Học và học lại ngành của bạn

Gửi bởi Nxb trong 14-04-2022 - 20:51

Em đọc $l$-adic để học về six operations thôi, thực ra mỗi khi học em sẽ note lại nên không biết anh hay mọi người có hứng thú em sẽ lập một topic về $l$-adic cohomology xong sẽ note lại nội dung mình học hàng tuần.

Anh cũng cần 4 operations (thực ra cái anh đã làm có một bước xây dựng left adjoint cho hàm tử $Lf^*$), nhưng thực ra chả tính đối đồng điều bao giờ. Tuy nhiên, mình cứ đăng lên thôi, coi như xây dựng một môi trường văn hoá cho diễn đàn. Như anh thấy mọi người ở Pháp hay nói toán học còn có culture nữa (anh bị nói vậy khi anh nói nhiều công việc ở khoa thừa thãi không có ích cho nghiên cứu =)) ). Ví dụ như ở chỗ anh mọi người rất thích la cà với nhau, mặc dù anh cũng chưa cảm được lắm.




#733261 $f:\mathbb{Z}\to \mathbb{Z}$ tho...

Gửi bởi Nxb trong 14-04-2022 - 18:55

Cho $f:\mathbb{Z}\to \mathbb{Z}$ thoả mãn $d\mapsto f(d)-f(d-1)$ là một hàm đa thức. Chứng minh rằng $f$ cũng là một hàm đa thức.




#733259 Học và học lại ngành của bạn

Gửi bởi Nxb trong 14-04-2022 - 18:11

Để em thử anh. Nhưng mà cho em cái deadline dài dài  :D  Nếu được không biết anh Khuê (Nesbit), anh Hân (perfectstrong) và anh Đạt (WhjteShadow) viết một vài bài giới thiệu cho em với các bạn phổ thông / đại học biết tí mùi vị của toán ứng dụng ạ?

 

 

Em luận án tốt nghiệp là làm về giả thuyết Weil về số Tawagawa đó anh https://toanqpham.gi...io/Tamagawa.pdf

Đến một lúc em cũng đã đụng đến cuốn sách của Lurie một tí (khoảng 1/2 của chương 1 chỉ để hiểu geometric formulation của giả thuyết này), nhưng chỉ dừng đó vì kiến thức hình học đại số của em yếu quá. Nếu anh thích em có thể thử trình bày những gì em biết về giả thuyết Weil cổ điển, rồi anh giúp em hiểu mấy đoạn sau trong sách Lurie? 

 

Higher category thì có em cũng thử đọc một tí, nhưng sau cũng dừng lại vì đọc thiếu động lực. Thật ra em cũng thấy có nhiều người khuyên là không nên đọc sách HA và SAG của Lurie trừ khi thật sự cần dùng kiến thức đó. Mà em hiện giờ thì không biết dùng cái này vào cái gì em quan tâm  :closedeyes:

 

Tớ cũng muốn học về six operations (không nhất thiết là $l$-adic, topological version tớ mà hiểu cũng là tốt rồi, cũng không biết có khác nhau lắm không?) vì cái này có áp dụng cho lý thuyết biểu diễn được (nên họ mới gọi geometric representation theory). Theo cảm tưởng thì cái này như một công thức, không nhất thiết phải biết mọi chi tiết, chỉ cần biết đủ dùng là được rồi? 

ok, để khi nào anh rảnh a sẽ nói chi tiết thêm việc trình bày. 

 

Em không hỏi anh về six operations, nhưng anh cũng tiện trả lời giúp. Anh đoán cái six operations mà em cần sẽ ở trong phạm trù dẫn xuất nên em chỉ cần bắt đầu với việc học phạm trù dẫn xuất và sau đó đọc thẳng cái six operations trong setting của em. Nếu em muốn thêm motivation thì có thể đọc Grothendieck duality (có rất nhiều tài liệu về cái này), vì ý tưởng ban đầu của six operations xuất phát từ Grothendieck nhằm tổng quát hoá đối ngẫu Serre. Em có thể bắt đầu bằng cái slide này https://www.imo.univ...llusie/Xian.pdf




#733242 Học và học lại ngành của bạn

Gửi bởi Nxb trong 14-04-2022 - 01:00

Không biết giả thuyết Weil trên trường hàm khác gì giả thuyết Weil bình thường không nhỉ? Vì dạo này em cũng đang đọc $l$-adic cohomology và giả thuyết Weil.

 

Từ giờ Toàn kiểm duyệt bài viết bài nào tệ thì viết tus cho tớ với anh Nxb biết :D  vì đúng tớ toàn kiểu introductory nên không hiểu thì có vấn đề thật.

Giả thuyết Weil này là giả thuyết Weil về các số Tamagwa chú ơi, còn anh đoán cái Bằng bảo là giả thuyết Weil về  hàm zeta. Nhưng mà trong cuốn sách kia lại có một chương về đối đồng điều $l$-adic nên có liên quan tới cái chú đang làm rồi đấy. =))




#733240 Học và học lại ngành của bạn

Gửi bởi Nxb trong 14-04-2022 - 00:46

Em vào trường này thì đang định xin học về chương trình Langlands ạ. Trường đại học ở Úc em học có nhiều người làm trong mảng lý thuyết biểu diễn ((geometric) representation theory) nên hồi đó em cũng cố theo học mảng này. Nói thế thôi ạ chứ em cũng quèn lắm, cũng chỉ có kiến thức mỗi mảng một ít, chưa cố đi chuyên sâu vào cái nào cả. 

 

Giờ em cũng chỉ đang cố đọc hiểu bài của Bằng với anh nxb viết ạ. Rồi nếu mà thấy thạo toán bằng tiếng việt một tí nữa thì em sẽ xin viết một bài ạ. 

Anh viết bài để cổ vũ mọi người tìm hiểu về higher category, nhưng hoá ra đế đọc còn không hiểu thì bài viết tệ thật. Thực ra bài viết về $\infty$-phạm trù đó anh tổng hợp lại từ Kerodon, nhưng có lẽ viết ít hơn và formal hơn như giới thiệu trong quyển sách higher topos của Lurie thì tốt hơn. 

 

Toàn định theo Langlands thì chắc cũng có kiến thức về nhóm đại số đúng không ? Anh đang định đọc cuốn sách về giả thuyết Weil trên trường hàm của Lurie :https://www.math.ias...wa-abridged.pdf. Anh xem qua thì thầy phần về higher category khá đơn giản và vì là sách nên được nhắc lại rất cẩn thận, trùng lặp khá nhiều với HA là cái anh học được một ít rồi nên anh ước chừng nếu ai đó học về nhóm đại số thì sẽ dễ dàng đọc được chương 1 Introduction của cuốn sách. Nếu có hứng thú thì bảo anh nhé.

 

Thực ra anh đang mới học về spectral algebraic geometry, nhưng thấy khối lượng lớn quá (anh cần nhảy đến khoảng trang 400 của SAG của Lurie), và anh cũng bị lost luôn từ khoảng mấy chục trang đầu tiên của SAG nên anh nghĩ nếu nhìn ngay lập tức được một ứng dụng của lý thuyết thì sẽ có cảm quan tốt hơn về một đống định nghĩa trong SAG. Tuy nhiên giả thuyết Weil kia không phải cái anh quá quan tâm nên hi vọng có thể cộng tác được với ai đó để học thêm. 




#733176 Về việc viết bài tổng hợp kiến thức

Gửi bởi Nxb trong 09-04-2022 - 03:09

Em chào các anh chị và các bạn trên diễn đàn VMF. 

Ở trường em từ khóa K64 không còn dạy môn đại số giao hoán, mà đây là một môn nền tảng cho những kiến thức sau này nên em muốn viết một series tổng hợp các kiến thức cơ bản trong đại số giao hoán dựa trên cuốn Introduction to Commutative Algebra của Atiyah. Em có một số thắc mắc mong được các anh chị giải đáp:

  • Hiện tại có ai trên diễn đàn từng viết một nội dung tổng hợp như vậy chưa ạ?
  • Các chứng minh cho các định lí và mệnh đề có cần chứng minh chi tiết không ạ?
  • Có thể đưa các bài tập trong sách vào được không ạ? Vì có rất nhiều bài tập hay có thể thảo luận ạ.

Ngoài ra em rất mong nhận được thêm các góp ý ngoài các câu hỏi trên vì em là lính mới trên diễn đàn VMF ạ :3
Em xin cảm ơn trước ạ.

Ai cũng đều gặp khó khi mới học đại số giao hoán, nhưng những nội dung đại số giao hoán trong box toán hiện đại chỉ là về cụ thể một khía cạnh nào đó của đại số giao hoán nên giả sử tổng hợp lại theo nghĩa viết lại tất cả những gì trong Atiyah thì chưa ai làm. 

 

Trước khi trả lời tiếp hai câu hỏi của em thì bài em vừa đăng gây hiểu nhầm cho anh là mở rộng/ hạn chế ideal là cả một chủ đề em muốn đăng ( mà thực ra nó đúng là một chủ đề), nhưng trong đó lại không có một insight hay câu hỏi nào cả nên anh không hiểu em đang làm gì. Còn nếu em đăng tổng hợp thì hãy viết luôn chủ đề là đại số giao hoán. Từ đó em cứ thoải mái đăng lên.

 

Hai câu hỏi tiếp theo anh nghĩ có lẽ những ai cũng đang học đại số giao hoán trả lời thì tốt hơn.

 

Ý kiến thêm: có lẽ em cần mục đích rõ ràng hơn cho việc tổng hợp. Đại số giao hoán có kích thước rất lớn, nhưng cày cuốc kiến thức cơ bản để học cái khác thì lại ngắn (tiêu chuẩn là một kỳ học, tự cày thì chắc hết 6 tháng - 1 năm, trước đây anh tự đọc thì bỏ hẳn 3 chương trong Atiyah: Artin rings, completion, dimension). Nên anh nghĩ nếu bài tổng hợp này mục tiêu chỉ là để giúp em thì chắc không giúp gì nhiều. Anh nghĩ em chỉ cần đưa thắc mắc cụ thể về lý thuyết và bài tập lên, và có thể đọc song song với lý thuyết số để lấy motivation. Chẳng hạn như quyển sách này của Milne https://www.jmilne.o...seNotes/ANT.pdf




#733173 Mở rộng và hạn chế ideal

Gửi bởi Nxb trong 08-04-2022 - 23:15

Bài viết này trình bày một số kết quả về mở rộng và hạn chế ideal trong trường hợp trên vành thương, trên vành các thương và trên mở rộng nguyên. Tùy vào đối tượng cụ thể mà mở rộng và hạn chế còn có nhiều tính chất thú vị khác, tuy nhưng bài viết sẽ tập trung vào các ideal tổng quát là chính. Các kết quả trong bài viết tổng hợp từ [1], [2].

Cho $A$ là một vành. Nếu $\mathfrak{a}$ là ideal của $A$ thì kí hiệu $\mathfrak{a}\lhd A$. Ngoài ra ta gọi $I(A)$ là họ các ideal trong $A$, $Spec(A)$ là họ các ideal nguyên tố trong $A$.

Với miền nguyên $A$ và tập con nhân tính $S$ của $A$ ($0\notin S$), kí hiệu $S^{-1}A=\{a/s|a\in A,s\in S\}$ là vành các thương trên $A$ đối với $S$. Đặc biệt trong trường hợp $S=S_{\mathfrak{p}}=A-\mathfrak{p}$ với $\mathfrak{p}$ là một ideal nguyên tố trong $A$ thì ta kí hiệu $A_{\mathfrak{p}}=S_{\mathfrak{p}}^{-1}A$.
Một số kiến thức cơ bản về vành và ideal, bạn đọc có thể xem trong chương I của [1].

 

1. Lý thuyết cơ bản về mở rộng và hạn chế ideal

 

Ở mục này ta sẽ xét $A,B$ là các vành và $f:A\rightarrow B$ là một đồng cấu vành. Khi đó ta có thể coi $B$ là một "mở rộng" của $A$.
Xét $\mathfrak{a}$ là một ideal của $A$, ta gọi mở rộng của $\mathfrak{a}$ trên $B$ là ideal $Bf(\mathfrak{a})$, kí hiệu bởi $\mathfrak{a}^e$ (ở đây cần nhấn mạnh $f(\mathfrak{a})$ chưa chắc là ideal trong $B$ nên ta cần lấy ideal sinh bởi nó).
Xét $\mathfrak{b}$ là một ideal của $B$, khi đó ta chỉ ra được $f^{-1}(\mathfrak{b})$ là một ideal trên $A$, gọi là hạn chế của $\mathfrak{b}$ trên $A$, kí hiệu bởi $\mathfrak{b}^c$.

 

Tính chất 1: Cho $\mathfrak{a}\lhd A$ và $\mathfrak{b}\lhd B$. Khi đó:
• $\mathfrak{a}\subset \mathfrak{a}^{ec}, \mathfrak{b} \supset \mathfrak{b}^{ce}$,
• $\mathfrak{a}^{ece}=\mathfrak{a}^{e}$ và $\mathfrak{b}^{c}=\mathfrak{b}^{cec}$.

 

Tính chất trên có thể chứng minh dễ dàng nên tác giả nhường lại bạn đọc. Đặc biệt ở mệnh đề sau của tính chất 1 cho thấy rằng trên tập $\{\mathfrak{a}^{e}|\mathfrak{a}\lhd A\}$ thì phép lấy $^{ce}$ (tức là hạn chế rồi mở rộng) là một ánh xạ bất biến, tương tự với phép lấy $^{ec}$ trên tập $\{\mathfrak{b}^{c}|\mathfrak{b}\lhd B\}$. Đó là cơ sở để ta quan tâm đến hai tập hợp sau.

 

Mệnh đề 2: $C=\{\mathfrak{a}\lhd A| \exists \mathfrak{b}\lhd B: \mathfrak{b}^c= \mathfrak{a}\}$ được gọi là họ các ideal hạn chế trên $A$, $E=\{\mathfrak{b}\lhd B| \exists \mathfrak{a}\lhd A:\mathfrak{a}^e= \mathfrak{b}\}$ được gọi là họ các ideal mở rộng trên $B$. Khi đó $C=\{\mathfrak{a}\lhd A:\mathfrak{a}^{ec}=\mathfrak{a}\}$ và $E=\{\mathfrak{b}\lhd B:\mathfrak{b}^{ce}=\mathfrak{b}\}$.
Hơn nữa ta có song ánh \[(\_)^e:C\rightarrow E, \mathfrak{a}\mapsto \mathfrak{a}^e\] với ánh xạ ngược $(\_)^c:E\rightarrow C$, $\mathfrak{b}\mapsto \mathfrak{b}^c$.

Chứng minh. Ý thứ nhất nếu $\mathfrak{a}$ nằm trong $C$ thì tồn tại $\mathfrak{b}\lhd B:\mathfrak{a}=\mathfrak{b}^c$. Do đó $\mathfrak{a}^{ec}=\mathfrak{b}^{cec}=\mathfrak{b}^{c}=\mathfrak{a}$, ngược lại nếu $\mathfrak{a}=\mathfrak{a}^{ec}=(\mathfrak{a}^e)^c$ dẫn tới $\mathfrak{a}\in C$.
Ý thứ hai, theo nhận xét trước đó của ta thì $(\_)^e \circ (\_)^c = Id_E$ và $(\_)^c \circ (\_)^e = Id_C$ nên ta có $(\_)^e$ và $(\_)^c$ là song ánh.

 

Mệnh đề trên rất quan trọng, nó cho phép liên hệ các ideal trên $A$ với ideal trên $B$ một cách tương ứng. Trong từng trường hợp cụ thể, tương ứng trên sẽ cho ta các tính chất khác nhau. Tiếp theo là một loạt tính chất của mở rộng và hạn chế, xem như bài tập cho bạn đọc.

 

Mệnh đề 3: Cho $\mathfrak{a}_1,\mathfrak{a}_2 \lhd A$, $\mathfrak{b}_1,\mathfrak{b}_2 \lhd B$ . Khi đó:

• $(\mathfrak{a}_1+\mathfrak{a}_2)^e=\mathfrak{a}_1^e+\mathfrak{a}_2 ^e$; $(\mathfrak{b}_1+\mathfrak{b}_2)^c\supset \mathfrak{b}_1^c+\mathfrak{b}_2 ^c $;
• $ (\mathfrak{a}_1\cap \mathfrak{a}_2)^e\subset \mathfrak{a}_1^e\cap\mathfrak{a}_2 ^e$; $ (\mathfrak{b}_1\cap \mathfrak{b}_2)^c=\mathfrak{b}_1^c\cap\mathfrak{b}_2 ^c$;
• $(\mathfrak{a}_1\mathfrak{a}_2)^e=\mathfrak{a}_1^e\mathfrak{a}_2 ^e$; $(\mathfrak{b}_1\mathfrak{b}_2)^c=\mathfrak{b}_1^c\mathfrak{b}_2 ^c $;
• $(\mathfrak{a}_1:\mathfrak{a}_2)^e=(\mathfrak{a}_1^e:\mathfrak{a}_2^e)$, $(\mathfrak{b}_1:\mathfrak{b}_2)^c=(\mathfrak{b}_1^c\mathfrak{b}_2 ^c)$ trong đó $(\mathfrak{a}:\mathfrak{b})=\{x\in A:x\mathfrak{b}\subset \mathfrak{a}\}$.

 

Kết thúc mục này là tính chất bảo toàn tính nguyên tố của phép lấy hạn chế:

 

Mệnh đề 4: Cho $\mathfrak{P}$ là ideal nguyên tố trong $B$, khi đó $\mathfrak{P}^c$ là ideal nguyên tố trong $A$
Chứng minh. Xét $ab\in \mathfrak{P}^c=f^{-1}(\mathfrak{P})$, khi đó $f(a)f(b)\in \mathfrak{P}$ nên $f(a)\in \mathfrak{P}$ hoặc $f(b)\in \mathfrak{P}$, dẫn tới $a\in\mathfrak{P}^c$ hoặc $b\in\mathfrak{P}^c$.

 

Cần lưu ý rằng mở rộng của một ideal nguyên tố chưa chắc đã là ideal nguyên tố.
Nói chung mỗi mục II,III,IV của ta sẽ đi theo hướng: xác định tập C và E tương ứng với mở rộng ta đang xét, khảo sát tính cực đại, tính nguyên tố của các ideal khi mở rộng và một số tính chất liên quan khác.

 

Tài liệu tham khảo.

[1] M. F. Atiyah - I. G. Macdonald, Introduction to Commutative Algebra.

[2] Serge Lang, Algebraic Number Theory.

Vành $A$ không cần nguyên để định nghĩa vành các thương $S^{-1}A.$

 

Trước đây đại số giao hoán không được dạy ở Việt Nam, nhưng không may cho bạn là cách đây vài năm thì Đại học Khoa học Tự nhiên Hà Nội đã bắt đầu dạy môn này ở bậc đại học nên nếu bạn không sửa lại thì mình phải đóng chủ đề này vì box này không phải để mọi người xem lại kiến thức chung. Vẫn chủ đề này, bạn có thể đặt các câu hỏi, hoặc đăng bài tập, hoặc thảo luận sâu thêm,…, thì không vấn đề gì.

 

Trong box toán đại cương mình đang viết để tiếp nối đường cong và mặt đại số cho học sinh THCS/ phổ thông. Nếu bạn vẫn muốn viết về chủ đề này thì bạn có thể viết nó trong hoàn cảnh giải thích cho học sinh. Chẳng hạn như ta sẽ phải xét ánh xạ chính quy giữa hai đường cong.