Jump to content

Photo

Tìm min $A=\frac{x^2y}{\left(x^2+y^2\right)\left(\sqrt{4x^2+y^2}+y\right)}$ với $x\neq0$ và $y>0.$


  • Please log in to reply
1 reply to this topic

#1
Alexman113

Alexman113

    Thiếu úy

  • Thành viên
  • 666 posts

Cho các số thực $x,\,y$ sao cho $x\neq0$ và $y>0$ thỏa mãn $2y^2\left(11x^2+1\right)=8x^4+6y^4+1.$ Tìm giá trị nhỏ nhất của biểu thức: $$A=\dfrac{x^2y}{\left(x^2+y^2\right)\left(\sqrt{4x^2+y^2}+y\right)}$$

 


KK09XI~ Nothing fails like succcess ~

#2
Phạm Hữu Bảo Chung

Phạm Hữu Bảo Chung

    Thượng úy

  • Thành viên
  • 1360 posts
Giải
Đặt $t = \dfrac{x^2}{y^2}$
Từ giả thiết, ta có:
$22\dfrac{x^2}{y^2} + \dfrac{2}{y^2} = 8\dfrac{x^4}{y^4} + 6 + \dfrac{1}{y^4}$
 
$\Rightarrow 8t^2 - 22t + 6 = - \left ( \dfrac{1}{y^2} - 1\right )^2 + 1 \leq 1 \Rightarrow \dfrac{1}{4} \leq t \leq \dfrac{5}{2}$
 
Khi đó:
$A=\dfrac{x^2y}{\left(x^2+y^2\right)\left(\sqrt{4x^2+y^2}+y\right)} = \dfrac{\dfrac{x^2}{y^2}}{\left ( \dfrac{x^2}{y^2} + 1\right ) \left ( \sqrt{4\dfrac{x^2}{y^2} + 1} + 1\right )}$
 
$\Rightarrow A = \dfrac{t}{(t + 1)\left ( \sqrt{4t + 1} + 1\right )}$
 
Xét hàm số $f(t) = \dfrac{t}{(t + 1)\left ( \sqrt{4t + 1} + 1\right )}$ trên $\left [ \dfrac{1}{4}; \dfrac{5}{2}\right ]$
 
Có: $f'(t) = \dfrac{-2t^2 + 2t + \sqrt{4t + 1} + 1}{(t + 1)^2\sqrt{4t + 1}\left ( \sqrt{4t + 1} + 1\right )^2}$
Khi đó: $f'(t) = 0 \Leftrightarrow -2t^2 + 2t + \sqrt{4t + 1} + 1 = 0 \Leftrightarrow t = 2$
 
Vì vậy, ta tìm được: $Min_A = \underset{\forall t \in \left [\dfrac{1}{4}; \dfrac{5}{2} \right ]}{Min_{f(t)}} = f\left (\dfrac{1}{4} \right ) = \dfrac{\sqrt{2} - 1}{5}$
 
Dấu "=" xảy ra khi $t = \dfrac{1}{4}$ và $y^2 = 1$. Khi đó: $y = 1$ và $x = \pm \dfrac{1}{2}$

Edited by Phạm Hữu Bảo Chung, 28-08-2013 - 16:48.

Thế giới này trở nên bị tổn thương quá nhiều không phải bởi vì sự hung bạo của những kẻ xấu xa mà chính bởi vì sự im lặng của những người tử tế :)




1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users