Jump to content

Photo

Chứng minh $\frac{a^{4}}{1+a^{2}b}+\frac{b^{4}}{1+b^{2}c}+\frac{c^{4}}{1+c^{2}a}\geq...$


  • Please log in to reply
3 replies to this topic

#1
moonlight0610

moonlight0610

    Binh nhất

  • Thành viên
  • 44 posts
Chứng minh rằng với mọi a,b,c > 0, $\frac{a^{4}}{1+a^{2}b}+\frac{b^{4}}{1+b^{2}c}+\frac{c^{4}}{1+c^{2}a}\geq \frac{abc\left ( a+b+c \right )}{1+abc}$

Edited by Ispectorgadget, 08-03-2012 - 12:30.


#2
Tham Lang

Tham Lang

    Thượng úy

  • Thành viên
  • 1149 posts
Bài này mình xin đưa ra lời giải sơ lược
Dễ dàng chứng minh được
$$\dfrac{a^4}{1 + a^2b} + \dfrac{b^4}{1 + b^2c} + \dfrac{c^4}{1 + c^2a} \ge \dfrac{b^3a}{1 + a^2b} + \dfrac{c^3b}{1 + b^2c} + \dfrac{a^3c}{1 + c^2a} $$ $$ = abc.\left (\dfrac{b^2}{c + a^2bc} + \dfrac{c^2}{a + ab^2c} + \dfrac{a^2}{b + abc^2}\right ) \ge abc\dfrac{(a + b + c)^2}{a + b + c + abc(a + b + c)} = \dfrac{abc(a + b + c)}{1 + abc}$$

Edited by Tham Lang, 18-07-2012 - 21:47.

Off vĩnh viễn ! Không ngày trở lại.......


#3
PRONOOBCHICKENHANDSOME

PRONOOBCHICKENHANDSOME

    Thượng sĩ

  • Thành viên
  • 227 posts
$Q.E.D \Leftrightarrow \sum_{cyc} \frac{a^3}{bc(1+a^2b)} \geq \frac{a+b+c}{1+abc} $ Thật vậy :$VT \geq \frac{(a+b+c)^3}{3(abc+1)(ab+bc+ca)}\geq VP$

#4
phuc_90

phuc_90

    Sĩ quan

  • Thành viên
  • 438 posts
Thêm cách biến đổi khác

$\sum \dfrac{a^4}{1+a^2b} = \sum \dfrac{a^4c}{c+a^2bc} \geq \dfrac{(a^2\sqrt{c}+b^2\sqrt{a}+c^2\sqrt{b})^2}{(1+abc)(a+b+c)}$

Do đó ta chỉ cần chứng minh $a^2\sqrt{c}+b^2\sqrt{a}+c^2\sqrt{b} \geq \sqrt{abc}(a+b+c)$

Nhưng BĐT này đúng vì $\dfrac{a^2}{\sqrt{ab}}+\dfrac{b^2}{\sqrt{bc}}+\dfrac{c^2}{\sqrt{ca}} \geq \dfrac{(a+b+c)^2}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}} \geq a+b+c$




1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users