Đến nội dung

Kpro96

Kpro96

Đăng ký: 04-04-2016
Offline Đăng nhập: 06-04-2016 - 18:55
-----

Trong chủ đề: Cơ bản về nguyên lý Đi-rích-lê

05-04-2016 - 22:43

mọi người giúp mình bài này với:

Hai đĩa mottj lớn 1 nhỏ , mỗi đĩa đc chia thành 200 hình quạt đều nhau. Các hình quan đc sơn bằng màu xanh hoặc đỏ. Biết đĩa lớn có 100 hình quạt đc sơn bằng màu đỏ 100 đc sơn bằng màu xanh. CMR: ta luôn có thể đặt hai đĩa trùng tâm sao cho màu ở 2 đĩa khớp nhau tại ít nhất 100 hifh quạt


Trong chủ đề: Cơ bản về nguyên lý Đi-rích-lê

05-04-2016 - 18:31

3. Toán về tổng, hiệu, chữ số tận cùng...các loại:
Ví dụ 1: Cho 51 số nguyên dương khác nhau có 1 chữ số và có 2 chữ số. CMR ta có thể chọn ra 6 số nào đó mà bất cứ 2 số nào trong số đã lấy ra ấy không có chữ số hàng đơn vị giống nhau cũng không có chữ số hàng chục giống nhau.
GIẢI:Vì có 51 số nên tìm được 6 chục sao cho một nhóm có không ít hơn 6 số rơi vào một trong các số chục đó, một nhóm có không ít hơn 5 số rơi vào chục khác... Cuối cùng có ít nhất một trong các số đã cho rơi vào một chục nào đó (như vậy số các chục khác nhau không ít hơn 6) về các số đã cho là khác nhau (chú ý các số dạng xét nhiều nhất có 2 chữ số ) do đó ở nhóm cuối cùng ta lấy một số , sau đó nhóm trước đó (vì có ít nhất 2 chữ số hàng đơn vị của hai số trong nhóm ấy khác nhau) ta lấy một số khác với chữ số hàng đơn vị khác số chọn trước, rồi nhóm trước đó lại lấy 1 số có chữ số hàng đơn vị khác 2 số chọn trước... Cuối cùng sẽ được 6 số phải tìm với các chữ số khác nhau.

Ví dụ 2: Chọn bất kì n+1 số trong 2n số tự nhiên từ 1 đến 2n (n>=2). CMR trong các số được chọn có ít nhất 1 số bằng tổng của 2 số được chọn (kể cả các trường hợp 2 số hạng của tổng bằng nhau ).
GIẢI:Giả sử $a_1<a_2<...<a_n<a_{n+1}$ là n+1 số được chọn.
Xét n số: $a_{n+1}-a_1=b_1$
$a_{n+1}-a_2=b_2$
........................ (mỗi hiệu đều nhỏ hơn 2n)
$a_{n+1}-a_n=b_n$
Trong tập 2n+1 số đó là $a_1,a_2,...,a_{n+1}, b_1,b_2,...,b_n$ tồn tại 2 số bằng nhau, hai số ấy không thể cùng thuộc dãy $a_1,a_2,...,a_{n+1}$ cũng không thể cùng thuộc dãy $b_1,b_2,...,b_n$ . Ta có:
$a_{n+1}-a_1=a_i$ suy ra $a_{n+1}=a_1+a_i$ (đpcm)

B. Các bài toán hình học:
1. Đánh giá các điểm, các đường thẳng:
Ví dụ 1: Cho một hình vuông và 13 đường thẳng, mỗi đường thẳng đều chia hình vuông thành hai tứ giác có tỉ số diện tích 2:3. CMR trong số 13 đường thẳng đó, có ít nhất 4 đường thẳng cùng đi qua một điểm.
GIẢI: Gọi d là đường thẳng chia hình vuông ABCD thành hai tứ giác có tỉ số diện tích 2:3. Đường thẳng d không thể cắt hai cạnh kề nhau của hình vuông vì khi đó không tạo thành hai tứ giác. Giả sử d cắt hai cạnh AB và CD tại M và N, khi đó nó cắt đường trung bình EF tại Ị
Giả sử $S_{AMND}=\dfrac{2}{3}S_{BMNC}$ thì $EI=\dfrac{2}{3}IF$
Như vậy mỗi đường thẳng đã cho chia các đường trung bình của hình vuông theo tỉ số 2:3. Có 4 điểm chia các đường trung bình của hình vuông ABCD theo tỉ số 2:3.
Có 13 đường thẳng, mỗi đường thẳng đi qua một trong 4 điểm. Vậy theo nguyên lý Đirichlê có ít nhất 4 đường thẳng đi qua.
Ví dụ 2: Bên trong tam giác đều ABC cạnh 1 đặt 5 điểm. CMR tồn tại 2 điểm có khoảng cách nhỏ hơn 0,5.
GIẢI: Các đường trung bình của tam giác đều cạnh 1 sẽ chia nó ra làm 4 tam giác đều cạnh 0,5. Do đó trong một tam giác nhỏ đó có ít nhất 2 điểm đã cho, và các điểm đó không thể rơi vào các đỉnh của tam giác. Vậy khoảng cách giữa hai điểm đó nhỏ hơn 0,5.

2. Đánh giá góc và độ dài:
Ví dụ 1: Trên mặt phẳng cho n đường thẳng từng đôi một không song song với nhau. CMR góc giữa hai đường thẳng nào đó trong số đó không lớn hơn $\dfrac{\180^ \circ}{n}$
GIẢI: Lấy trên mặt phẳng một điểm bất kì và kẻ qua đó các đường thẳng song song với các đường thẳng đã cho. Chúng chia mặt phẳng ra làm 2n góc, có tổng các góc bằng \360^ \circ. Do đó tồn tại một góc không lớn hơn $\dfrac{\180^ \circ}{n}$
Ví dụ 2: Bên trong một đường tròn bán kính n đặt 4n đoạn thẳng có có độ dài 1. CMR có thể kẻ một đường thẳng song song hoặc vuông góc với đường thẳng l cho trước và cắt ít nhất hai đoạn thẳng đã cho.
GIẢI: Giả xử lý là đoạn thẳng bất kì vuông góc với l. Kí hiệu độ dài các hình chiếu của đoạn thẳng thứ i lên các đường thẳng l và $l_1 là a_i và b_i$ tương ựng Vì độ dài của mỗi đoạn thẳng bằng 1 nên a_i+b_i\geq 1. Do đó $(a_1+..+a_{4n})+(b_1+...+b_{4n})\geq 2n$. Không mất tính tổng quát giả sử $a_1+...+a_{4n}\geq b_1+...+b_{4n}$ . Khi đó $a_1+...+a_{4n}\geq 2n$. Tất cả các đoạn thẳng đã cho đều được chiếu xuống đoạn thẳng có độ dài 2n, vì chúng đều nằm trong đường tròn bán kính n.Nếu như các hình chiếu của các đoạn thẳng đã cho lên đường thẳng l không có điểm chung, thì sẽ có $a_1+...+a_{4n}<2n$. Do đó trên l phải có một điểm bị các điểm của ít nhất 2 trong số các đoạn thẳng đã cho chiếu lên nó. Đường vuông góc với l tại điểm đó sẽ cắt ít nhất hai đoạn thẳng đã cho.

3. Các bài toán về tô màu
Bài 1 : Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong 2 màu đỏ và xanh
Chứng minh tồn tại 1 hình chữ nhật có các đỉnh cùng màu

Giải : Giả sử ta có một lưới ô vuông tạo bởi 3 đường nằm ngang và 9 đường thẳng đứng , mỗi nút lưới được tô bởi một màu xanh hoặc đỏ.
Xét 3 nút lưới của một đường dọc , mỗi nút có hai cách tô màu nên mỗi bộ ba nút trên đường dọc ấy có 2.2.2=8 cách tô màu.
Có 9 đường dọc, mỗi đường có 8 cách tô màu nên tồn tại hai đường có cách tô màu như nhau.
Chẳng hạn hai bộ ba điểm đó là $A_1, A_2, A_3 và B_1, B_2, B_3$
Vì 3 điểm $A_1, A_2, A_3$ chỉ được tô bởi hai màu nên tồn tại hai điểm cùng màu , chẳng hạn A_1 và A_2, khi đó hình chữ nhật $A_1A_2B_2B_1$ có 4 đỉnh cùng một màu.

Bài 2 :Giả sử 1 bàn cờ hình chữ nhật có 3x7 ô vuông được sơn đen hoặc trắng.Chứng minh rằng với cách sơn màu bất kì ,trong bàn cờ luôn tồn tại hình chữ nhật gồm các ô ở 4 góc là các ô cùng màu
Lời giải :
Mẫu sơn màu có thể xảy ra với bàn cờ này có dạng từ 1 đến 8.Giả sử một trong số các cột thuộc dạng 1.Bài toán sẽ được chứng minh nếu tất cả các cột còn lại thuộc dạng 1,2,3 hoặc 4.Giả sử tất cả các cột còn lại thuộc dạng 5,6,7,8 Khi đó theo nguyên lí Dirichlet 2 trong số 6 cột có 2 cột cùng 1 dạng và như vậy bài toán cũng được chứng minh
Chứng minh hoàn toàn tương tự nếu 1 cột có dang 8 .Giả sử không có cột nào trong các cột 1,8 thì theo nguyên lí Dirichlet cũng có 2 cột cùng dạng và bài toán cũng đựoc chứng minh

4.Nguyên lý Dirichlet cho diện tích
Nếu A là một bề mặt và $A_1 , A_2..A_n$ là các bề mặt sao cho $A_i \subset A_n$ và $S(A)<S(A_1)+S(A_2)+...+S(A_n)$ thì ít nhất có 2 bề mặt trong số các bề mặt trên có điểm trong chung
Cụ thể hoá
1.Cho những đoạn thẳng $\Delta_1 ,\Delta_2...\Delta_n$ nằm trong đoạn $\Delta$ và tổng độ dài của $\Delta_1 ,\Delta_2...\Delta_n$ lớn hơn độ dài của \Delta.Khi đó ít nhất 2 đoạn trong số những đoạn \Delta_1 ,\Delta_2...\Delta_n có điểm trong chung
2.Cho những đa diện $P_1 ,P_2...P_n$ nằm trong đa diện P và tổng thể tích của $P_1 ,P_2...P_n$ lớn hơn thể tích của P.Khi đó ít nhất 2 trong số những đa diện $P_1 ,P_2...P_n$ có điểm trong chung
3.Cho những cung $C_1 ,C_2...C_n$ nằm trên đường tròn C và tổng độ dài của $C_1 ,C_2...C_n$ lớn hơn C.Khi đó ít nhất 2 trong số những cung $C_1 ,C_2...C_n$ có điểm trong chung

a có thể giải thích rõ hơn cho e bài bàn cờ hcn 3x7 đc k ạ, chỗ các dạng, và vì sao nó chỉ nhận dạng 1-4