Đến nội dung

DangHongPhuc

DangHongPhuc

Đăng ký: 09-07-2016
Offline Đăng nhập: 21-05-2018 - 00:10
****-

#645788 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:18

101. Topo học đại số là gì?

Ban đầu, topo học được phát triển là một lĩnh vực nghiên cứu các mặt. Nhưng người ta sớm nhận ra rằng các khái niệm của nó có liên hệ mật thiết với một số bài toán có tầm quan trọng căn bản trong những lĩnh vực đa dạng của toán học. Các phương pháp đại số, nhất là lí thuyết nhóm, tỏ ra hết sức hữu ích trong những nghiên cứu như thế.

Phương pháp đại số này được gọi là topo học đại số và là một công cụ mạnh để chứng minh các kết quả topo học.

Nó cũng mang lại rất nhiều kết quả trong không gian cao chiều, nơi chúng ta không thể nhìn thấy mà chỉ có thể luận giải.

102. Topo học tập điểm là gì?

Trong khi topo học đã và đang được phát triển là một lĩnh vực nghiên cứu các mặt, nhưng người ta cũng nhận ra rằng topo học của riêng các mặt sơ cấp thôi là không đủ và nghiệm của các bài toán trong topo học một, hai, ba và n chiều là cần thiết. Những nghiên cứu này khai thác lí thuyết tập hợp và được phát triển thành topo học tập điểm.

Họ dạng hình học được nghiên cứu trong lĩnh vực topo học này là cực kì rộng rãi. Một điểm trong topo học này có thể biểu diễn một điểm của một hình dạng hình học bình thường, bản thân một hình dạng hoàn chỉnh, hay cả một hệ thống hình học.

103. Vì sao topo học được gọi là hình học tấm cao su?

Một mặt của topo học là nghiên cứu sự biến dạng của những hình dạng mà không xé rách hay nhập các điểm của chúng. Vì những biến dạng như thế có thể được thực hiện trên những hình vẽ trên một tấm cao su, nên topo học thỉnh thoảng được gọi là hình học tấm cao su.

Nhưng topo học hiện đại thì vươn xa ra khỏi phương diện vỡ lòng này.

104. Có phải topo học đương thời là nghiên cứu hình học không?

Lúc mới ra đời, topo học được xem là “khoa học của vị trí”, như tên gọi nghĩa đen của nó, nhưng dần dần nó đã phát triển vượt khỏi tầm vóc ban đầu của nó.

Về sự biến đổi đặc tính của nó, người ta thấy rõ rằng “topo học bắt đầu là nhiều hình học và ít đại số, nhưng bây giờ nó là nhiều đại số và ít hình học”.

Nói theo lịch sử, topo học đã phát triển theo hai hướng rạch ròi. Ở một hướng, cảm hứng dường như đến từ hình học, còn ở hướng kia giải tích có tầm ảnh hưởng chính.

105. Có đúng không nếu nói topo học là nghiên cứu tính liên tục?

Ngày nay, người ta thường chấp nhận rằng topo học là nghiên cứu tính liên tục.

Nhưng quan trọng hơn hết thảy, nó đã trở thành một ngành học nỗ lực hợp nhất hầu như toàn bộ toán học có chút tương tự với tìm kiếm triết học để sáp nhập toàn bộ kiến thức.

Ngày nay, topo học xâm nhập sâu vào toán học đến mức nó là một công cụ không thể thiếu của nhà toán học hiện đại, dù là toán lí thuyết hay toán ứng dụng.

106. Nói topo học là toán học của cái khả dĩ là có nghĩa như thế nào?

Đây là vì có nhiều câu hỏi chưa được trả lời trong những ngành toán học khác nhưng đã được xác định rõ ràng bằng cách áp dụng các khái niệm topo học.

Ví dụ, topo học xét những bài toán nhất định nào thì nghiệm có tồn tại hoặc không tồn tại, mặc dù nó thường không cho biết làm thế nào tìm ra nghiệm.

Tương tự, nó có thể cho biết những điều kiện nhất định nào là có thể hay không thể.

107. Có ví dụ nào đặc biệt không?

Xét một trường hợp từ đại số. Cái gọi là “định lí cơ bản của đại số” phát biểu rằng

Mỗi phương trình đại số bậc n bất kì với các hệ số thực hay phức

xn + a1xn-1 + a2xn-2 +... + an = 0

đều có nghiệm trong trường số phức.

Đây là một tình huống đại số thuần túy, tức là một phương trình dù có nghiệm hay không, nhưng không có chứng minh đại số thuần túy nào của kết quả quan trọng này. Mọi chứng minh đòi hỏi kiến thức giải tích hàm của vài biến số thực, hay giải tích phức.

Nhưng kể từ khi các khái niệm và các phương pháp topo học làm biến đổi phần lớn những ngành toán học này hầu như vượt ra ngoài thừa nhận, người ta thường tin rằng định lí trên về cơ bản phụ thuộc vào các xét đoán topo học.

108. Có ví dụ nào khác nữa không?

Một lần nữa, xét một trường hợp từ các phương trình vi phân. Đa số các hiện tượng vật lí và các bài toán của công nghệ hiện đại có thể được mô tả toán học bởi những phương trình vi phân, tức là những phương trình chứa các tốc độ biến thiên. Trong những nghiên cứu này, các phương trình vi phân phi tuyến xuất hiện thường xuyên nhưng chúng cực kì khó giải. Topo học có thể chỉ ra những loại nghiệm nào của những phương trình vi phân phi tuyến nhất định là có thể, mặc dù ở đây một lần nữa đáp số là định tính chứ không định lượng.

Trong ngữ cảnh như thế thì topo học được mô tả là toán học của cái có thể.

109. Các khái niệm topo có bất kì ứng dụng thực tế nào không?

Các khái niệm topo được sử dụng trong thiết kế các mạng lưới, nghĩa là trong phân phối điện, khí đốt và nước, và trong thiết kế tự động công nghiệp.

Chúng được sử dụng trong điều khiển lưu lượng giao thông và dẫn hướng tên lửa.

Chúng còn được áp dụng trong thiết kế bản đồ địa lí.

Lí thuyết các hệ thống động lực phong phú là nhờ các khái niệm và ý tưởng topo học.

Lí thuyết hàm hiện đại và logic biểu tượng có liên hệ mật thiết với topo học.

110. Mặt một bề là gì?

Lấy một băng giấy và dán hai đầu lại với nhau, A trùng với C, và B với D. Cách này cho ta một mặt trụ.

Mặt trụ có hai mặt – mặt trong và mặt ngoài – một mặt, ví dụ, có thể sơn màu xanh, còn mặt kia sơn màu đỏ.

Đồng thời, nó có hai cạnh, cạnh trên và cạnh dưới. Bây giờ lấy một băng giấy khác, xoắn nó nửa vòng rồi dán lại lần này sao cho A trùng với D, và B với C. Đây là dải Mobius nổi tiếng, do nhà toán học người Đức A. F. Mobius khám phá vào năm 1858.

Nếu chúng ta cố sơn hai mặt của vật này bằng hai màu, ta sẽ thấy rằng không thể làm được, vì nó chỉ có một mặt!

Trông có vẻ lạ, nhưng đáng để bạn làm thử với một băng giấy hay một dải lụa.




#645787 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:17

91. Topo học là gì?

Đó là một phát triển mới trong hình học vào thế kỉ 20 và là một trong những ngành phức tạp và sôi nổi nhất của toán học hiện đại.

Đó là một loại hình học nghiên cứu tính chất của các hình dạng và các mặt vẫn bất biến dưới tác dụng kéo giãn, bẻ cong, co nén, và xoắn.

92. Topo học khác gì với những hình học khác?

Không giống như những hình học khác, topo học không xét độ lớn của các chiều dài và các góc, nó là một môn hình học phi định lượng.

Topo học nghiên cứu các liên hệ chỉ phụ thuộc vào vị trí. Nói cách khác, nó chỉ nghiên cứu tính chất topo học của các hình dạng và các mặt.

93. Tính chất topo học của các hình dạng là gì?

Đây là những tính chất của các hình dạng vẫn không thay đổi ngay cả khi hình dạng đó bị biến dạng nhiều đến mức toàn bộ các tính chất đo lường và xạ ảnh của nó bị mất hết.

Xét một đường tròn (tức chỉ xét riêng đường cong, mà không xét diện tích khép kín bên trong) vẽ trên một tấm cao su. Bằng cách kéo giãn, bóp nén, bẻ cong, xoắn, nhưng không xé, nhập hay chồng, thì nó có thể biến dạng thành một elip, một tam giác, một hình vuông, hay bất cứ hình nào khác đều hay không đều.

Mỗi biến đổi như thế được gọi là một biến đổi topo. Tính chất phân biệt của nó là những bộ phận của hình đang tiếp xúc thì vẫn tiếp xúc, còn những bộ phận không tiếp xúc thì không thể tiếp xúc. Tóm lại, trong một biến đổi topo không thể có sự phân chia hay hợp nhất.

Dưới những tác dụng như thế, các tính chất như khoảng cách, góc, và diện tích bị biến đổi, còn các tính chất topo thì giữ nguyên.

94. Bên trong và bên ngoài! Đây có là những tính chất topo hay không?

Thực tế đường tròn có một “bên trong” và một “bên ngoài” là một tính chất topo.

Đường hình số 8 có hai vòng và do đó có hai “bên trong” là không tương đương topo với một đường tròn hay một tam giác, vì mỗi hình này chỉ một “bên trong”.

Một cái vòng tạo bởi hai đường tròn đồng tâm thì có hai “bên ngoài” và một “bên trong”.

95. Tính chất topo của các mặt là gì?

Xét bề mặt của một hình cầu. Nó có hai tính chất được bảo toàn dưới một biến đổi topo tùy ý.

Thứ nhất, bề mặt của hình cầu là kín. Kín theo nghĩa là không giống như hình trụ, nó không có cạnh rìa – một hình trụ được liên kết bởi hai cạnh rìa.

Thứ hai, mỗi đường cong kín trên mặt cầu chia mặt cầu thành hai phần tách biệt.

Một cái ống kín hay một cái vòng, gọi là vòng xuyến, thì không có tính chất này. Nếu một vòng xuyến bị cắt vuông góc với chiều dài của nó, thì nó không tách phần hai phần mà bị biến thành một hình ống cong, hình này có thể bị kéo thẳng thành hình trụ bởi phép biến đổi topo. Như vậy, mỗi đường cong kín trên mặt vòng xuyến không tách nó thành hai phần.

Vì thế, mặt cầu và mặt vòng xuyến là những mặt phân biệt về mặt topo học, hay nói theo các nhà topo học là chúng không đồng phôi.

96. Nếu có hai điểm bị lấy ra khỏi mặt cầu thì sao?

Bề mặt của một hình cầu với hai điểm bị loại ra là đồng phôi với một hình cầu có hai chỏm kín bị lấy mất và mỗi hình là đồng phôi với hình trụ. Hình cầu và hình lập phương thuộc cùng loại topo, tức là chúng là đồng phôi.

97. Một cặp găng tay thì sao?

Xét một cặp găng tay. Một cái là găng tay trái và một cái là găng tay phải. Nếu găng tay phải bị lộn từ trong ra ngoài thì nó trở thành găng tay trái. Găng tay trái trở thành găng tay phải nếu nó bị lộn từ trong ra ngoài. Lập luận topo cho phép chúng ta dự đoán sự biến đổi hình dạng này.

98. Những khái niệm căn bản của topo học là gì?

Khái niệm liền kề, lân cận, gần vô hạn và khái niệm tách vật (phân chia thành các bộ phận) là những khái niệm căn bản của topo học.

Một số khái niệm tương tự là bên trong và bên ngoài, bên phải và bên trái, liên kết và mất liên kết, liên tục và không liên tục.

99. Có phải topo học chỉ nghiên cứu các mặt?

Không, nghiên cứu các mặt chỉ là một lĩnh vực thôi. Topo học có nhiều phương diện, nhưng nó thường được chia làm ba phân ngành:

Topo học tổ hợp

Topo học đại số

Topo học tập điểm

Sự phân chia chủ yếu là để tiện lợi chứ không theo logic nào, bởi vì có sự chồng lấn đáng kể giữa các phân ngành topo học.

100. Topo học tổ hợp là gì?

Topo học tổ hợp là nghiên cứu các thuộc tính của những dạng hình học vẫn bất biến dưới các phép biến đổi topo.

Nó xem mỗi hình dạng là một tổ hợp gồm những hình đơn giản nối lại với nhau theo một kiểu liên tục, trái với topo học tập điểm xét các hình dạng là gồm tập hợp của các điểm.




#645786 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:15

81. Chúng ta có những đa diện khác nữa không?

Chúng ta có nhiều loại đa diện chẳng có liên quan gì đến không gian hay hình học. Một đa diện ba chiều sẽ là một lớp nguyên tố, mỗi nguyên tố trong đó sẽ cần đúng ba con số để xác định nó.

Một nhóm người có thể được xem là một đa diện – và một đa diện ba chiều, với ba con số x1, x2, x3biểu diễn tuổi tác, chiều cao và cân nặng, là cần và đủ để phân biệt họ.

Cũng nhóm người đó có thể được xem là một đa diện bốn chiều, nếu bốn con số x1, x2, x3, x4 biểu diễn tuổi tác, chiều cao, cân nặng, và số nhà được sử dụng. Nhóm người đó trở thành một đa diện năm chiều nếu bổ sung thêm một con số x5 biểu diễn thu nhập.

Chúng ta cũng có thể nghĩ tới một đa diện bốn chiều gồm các hạt chất khí, sử dụng ba chiều để cố định vị trí của chúng và một chiều cố định mật độ của chúng.

82. Ưu điểm của biểu diễn như thế là gì?

Giả sử chúng ta muốn minh họa sự phụ thuộc của áp suất chất khí vào thể tích của nó.

Ta làm việc này bằng cách dựng hai trục trong một mặt phẳng, dùng một trục biểu diễn thể tích, còn trục kia là áp suất. Đường cong thu được sẽ là một hyperbol cho một chất khí lí tưởng ở nhiệt độ không đổi.

Nếu chúng ta có một hệ phức tạp hơn có trạng thái được cho không phải bởi hai thuộc tính mà nói ví dụ năm thuộc tính, thì đồ thị biểu diễn hành trạng của nó liên quan đến một không gian năm chiều, tức là trạng thái của hệ này có thể được xem là một điểm trong một không gian năm chiều nào đó.

Tương tự, nếu trạng thái của một hệ được cho bởi n thuộc tính, hay n biến, thì trạng thái của nó có thể được xem là một điểm trong một không gian n chiều nào đó.

Ưu điểm của cách biểu diễn như thế là việc nghiên cứu một hệ được thực hiện bằng cách áp dụng và mở rộng các tương đương hình học và các khái niệm quen thuộc.

83. Có phải không gian thực tế của chúng ta nằm trong một không gian bốn chiều?

Khái niệm chiều thứ tư chỉ là một khái niệm trừu tượng được sáng tạo ra để mô tả theo ngôn ngữ hình học những ý tưởng không thể mô tả được bằng những biểu diễn hình học bình thường.

Nó được phát triển để đáp ứng yêu cầu của các hệ phụ thuộc vào vài ba biến số. Nhưng nó được dự tính chỉ là một phương pháp toán học mô hình hóa các hiện tượng vật lí và không liên quan gì với bản chất của không gian thực tế, chỉ có trong tiểu thuyết khoa học mới thường mô tả chiều không gian thứ tư.

Quan điểm cho rằng không gian ba chiều của chúng ta dìm trong một không gian bốn chiều thực sự là chất liệu của tư duy thần bí và chỉ là một sự xuyên tạc của những khái niệm khoa học.

84. Có thể áp dụng các khái niệm hình học cho đại số hay không?

Những bài toán đại số liên quan đến hai hay ba biến thường có cách hiểu hình học. Điều này có nghĩa là nếu một bài toán có một nghiệm đơn giản hoặc rõ ràng từ góc độ hình học, thì nghiệm đó cũng có ý nghĩa cho bài toán xét về phương diện đại số.

Một ví dụ sẽ làm sáng tỏ vấn đề.

Giả sử chúng ta muốn biết những nghiệm nguyên của bất đẳng thức

x2 + y2 < N

Về mặt hình học, bất đẳng thức x2 + y2 < N biểu diễn phần bên trong của vòng tròn có tâm tại gốc tọa độ và bán kính bằng √N , và bài toán được đơn giản thành như sau:

Có bao nhiêu điểm với tọa độ nguyên nằm bên trong vòng tròn bán kính √N?

Những điểm như thế là đỉnh của những hình vuông có cạnh bằng đơn vị chiều dài bên trong hình tròn. Số lượng điểm như thế nằm bên trong vòng tròn xấp xỉ bằng số lượng hình vuông nằm bên trong hình tròn, bằng diện tích của hình tròn bán kính .

Do đó, số lượng nghiệm nguyên của bất đẳng thức trên là khoảng πN.

Sai số ở kết quả tiến về không đối với những giá trị lớn của N.

Rõ ràng đáp số mặc dù hiển nhiên về mặt hình học nhưng không hiển nhiên từ phương diện đại số.

85. Kết quả trên có cái tương đương trong không gian cao chiều hơn hay không?

Bài toán tương ứng theo ba biến có thể được giải tương tự, nhưng nếu số lượng biến tăng vượt quá ba, thì phương pháp trên không còn áp dụng được.

Tuy nhiên, kết quả trên có thể được khái quát hóa cho bất kì số lượng biến nào để bài toán tương ứng theo n biến có một nghiệm trong đại số, mặc dù cách hiểu hình học không còn khả dụng vì không gian thực của chúng ta chỉ có ba chiều.

86. Hình học của không gian màu là gì?

Không gian được xem là một tập hợp của các điểm. Nhưng nếu các “điểm” là các vật, các sự kiện hay các trạng thái, thì tập hợp này có thể được xem là một “không gian” thuộc loại riêng của nó.

Khi đó, các khái niệm điểm, đường thẳng, khoảng cách,... được sử dụng với một ý nghĩa đã biến cải nhiều.

Một ví dụ của không gian như thế là không gian màu.

87. Không gian này tương ứng với hình học như thế nào?

Thị giác bình thường của con người có căn nguyên là ba màu. Sự cảm nhận một màu C là kết hợp của ba cảm nhận cơ bản: đỏ R, lục G và lam B với cường độ khác nhau, cho nên ta có

C = xR + yG + zB

trong đó x, y, z là kí hiệu cường độ, tính theo những đơn vị nhất định.

Một điểm có thể di chuyển trong không gian sang trái sang phải, ra trước ra sau, lên trên xuống dưới, cho nên sự cảm nhận màu sắc có thể biến thiên liên tục theo ba chiều bằng cách thay đổi các thành phần R, G và B của nó.

Tập hợp gồm tất cả những màu có thể có, do đó, được xem là không gian màu ba chiều.

Vì các cường độ không thể âm, nên x, y và z luôn luôn dương. Khi x = 0, y = 0, z = 0, ta không có màu gì hết (màu sắc vắng mặt hoàn toàn).

88. Điểm, đoạn và khoảng cách được định nghĩa như thế nào trong không gian này?

Ở đây, một “điểm” là một màu, “đoạn” AB là tập hợp thu được bằng cách trộn các màu A và B. “Khoảng cách” giữa hai màu được định nghĩa là độ dài của đường ngắn nhất nối giữa chúng. Phép đo chiều dài và khoảng cách trong không gian màu, do đó, được định nghĩa bởi một hình học phi Euclid nhất định.

89. Hình học của không gian màu có ứng dụng gì hay không?

Hình học của không gian màu cung cấp một cơ sở toán học chính xác để giải những bài toán về chất nhuộm trong ngành công nghiệp dệt, giúp phân biệt các tín hiệu màu, và những lĩnh vực có liên quan.

90. Hình học hữu hạn là gì?

Khái niệm không gian của chúng tôi là một tập hợp gồm các điểm hay các nguyên tố, chúng có số lượng vô hạn. Nhưng chúng ta còn có hình học của chỉ một số hữu hạn các điểm, ví dụ như 25 chẳng hạn.

Các tên gọi điểm, đường thẳng, khoảng cách, song song,... được sử dụng với ý nghĩa thích hợp cho hệ đang nghiên cứu.

Một hình học hữu hạn như thế áp dụng cho những bài toán nhất định, và đại số và lí thuyết số; và nó còn có ích trong lí thuyết mật mã và trong xây dựng các thiết kế thực nghiệm.




#645785 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:14

71. Độ dốc và độ cong được định nghĩa như thế nào?

Độ dốc là tốc độ mà một đường cong tăng hoặc giảm tính trên đơn vị hoành độ.

Độ cong là tốc độ mà chiều của đường cong biến thiên trên đơn vị chiều dài của đường cong.

Độ dốc của một đường thẳng là không đổi trên toàn chiều dài của nó, và độ cong của nó bằng không.

Độ cong của một đường tròn giữ nguyên không đổi trên toàn chiều dài của nó.

Độ dốc và độ cong biến thiên từ điểm này sang điểm khác đối với những đường cong khác.

72. Độ dốc và độ cong được tính như thế nào?

Giải tích cung cấp phương pháp tính những đại lượng này cho các đường cong khác nhau.

73. Hình học giải tích là gì?

Lĩnh vực nghiên cứu các đường cong và các mặt với sự hỗ trợ của toán học giải tích được gọi là hình học giải tích.

Hình học giải tích nghiên cứu những bài toán đa dạng vượt ra ngoài phép tính độ dốc và độ cong.

Nó cũng nghiên cứu bài toán rất quan trọng của trắc đạc, tức là bài toán xác định khoảng cách ngắn nhất giữa hai điểm trên một bề mặt.

74. Hệ tọa độ ba chiều là gì?

Nếu ta bổ sung thêm một trục Oz vuông góc với trục Ox và Oy, tức là vuông góc với mặt phẳng trang giấy và đo các khoảng cách song song với Ox, Oy và Oz theo trật tự đó, thì một điểm P trong không gian có thể được xác định bởi bộ ba số thực xếp theo trật tự (x1, y1, z1).

Ngược lại, một bộ ba số thực bất kì xếp theo trật tự xác định duy nhất một điểm trong không gian. (x1, y1, z1) được gọi là các tọa độ của điểm P.

Hình học tọa độ ba chiều nghiên cứu các điểm trong không gian hay, tương đương, những bộ ba số trật tự.

75. Hình học n chiều là gì?

Cayley và nhà toán học người Đức Grassmann, độc lập nhau, đã khái quát hóa hình học tọa độ hai chiều.

Trong hình học tọa độ hai chiều, một điểm được xác định bởi hai tọa độ và khoảng cách giữa hai điểm có tọa độ (x1, y1) và (x2, y2) được cho bởi

Theo định lí Pythagoras: PQ2 = PM2 + MQ2

Hay PQ2 = (x2 – x1)2 + (y2 – y1)2

Biểu thức này có thể được khái quát hóa, và trong hình học tọa độ bốn chiều, khoảng giữa hai điểm có tọa độ (x1, y1, z1, t1) và (x2, y2, z2, t2) được cho bởi

Ta có thể tiếp tục khái quát hóa cho hình học tọa độ n chiều, khoảng giữa hai điểm có tọa độ (x1, x2, x3, x4,..., xn) và (y1, y2, y3, y4,..., yn) được cho bởi

Mỗi khái niệm trong hình học hai chiều có thể khái quát hóa thành một khái niệm tương đương n chiều. Vì không gian mà chúng ta đang sống trong đó là ba chiều, nên trực quan hình học không thể cảm nhận vượt quá ba chiều, nhưng sự tương tự là rất có ích.

76. Hình học tọa độ bốn chiều có ứng dụng gì?

Hình học tọa độ bốn chiều có công dụng lớn đối với các nhà vật lí.

Giống hệt như một điểm trong một mặt phẳng hoàn toàn được xác định bởi hai con số gọi là tọa độ và một điểm trong không gian được xác định bởi ba tọa độ, một sự kiện được xác định bởi ba tọa độ cho biết vị trí trong không gian và tọa độ thứ tư cho biết thời điểm xảy ra.

Khoảng cách giữa hai sự kiện, tức là khoảng cách không-thời gian, như nó thường được gọi, được cho bởi

Hình học này đã được khai thác làm một công cụ thiết yếu trong phát triển của thuyết tương đối và trong nghiên cứu không gian, thời gian và lực hấp dẫn.

77. Khái niệm không gian trong toán học là gì?

Thuật ngữ không gian có hai ý nghĩa.

Hiểu theo một nghĩa nó là không gian thật sự bình thường, tức là không gian trải nghiệm của chúng ta.

Hiểu theo nghĩa khác, thì nó là “không gian trừu tượng”, tức là xét một tập hợp những đối tượng đồng nhất trong đó các liên hệ dạng không gian là đúng. Ví dụ, “khoảng cách” giữa hai vật có thể được xác định trong không gian này.

Trong toán học, người ta thường hiểu theo hàm nghĩa thứ hai.

78. Điểm là gì?

Khái niệm điểm trong hình học tọa độ hai chiều là nguyên tố không gian có vị trí có thể được cố định bởi hai khoảng cách. Do đó, không gian hai chiều có thể được xem là một tập hợp gồm tất cả những nguyên tố đó có vị trí có thể được cố định bởi hai chiều dài.

Tương tự, không gian ba chiều có thể được xem là một tập hợp gồm tất cả những nguyên tố có vị trí có thể được cố định bởi ba chiều dài.

Với ba tọa độ là đã đạt tới giới hạn của nhận thức trực quan vì người ta không thể nào hình dung ra trong không gian thật vị trí của một điểm với bốn hoặc nhiều tọa độ.

79. Làm sao nhận thức được không gian n chiều?

Thay vì gán ba chiều dài để cố định vị trí của một điểm trong không gian ba chiều, ta hãy nói rằng ta gán ba con số để cố định điểm đó. Khi này, điểm đó là một bộ ba trật tự đơn thuần và không cần thiết xem nó nằm trong một không gian thật sự nơi mắt chúng ta có thể nhìn vào.

Một khi dẹp bỏ được cái bản năng hình dung thị giác phiền toái kia và một điểm được nhận định là một bộ ba con số, thì ta chẳng có gì ngần ngại để thay con số 3 bằng số tổng quát n. Và chúng ta có một “không gian” n chiều, trong đó n có thể nhận giá trị lớn hơn 3.

Khi đó, một “điểm” tốt hơn nên được gọi là một “nguyên tố” và “không gian” là “đa diện”.

80. Đa diện có là một khái niệm tổng quát hơn không?

Tên gọi “đa diện” mang tính khái quát hơn và chính xác hơn thuật ngữ “không gian”.

Một đa diện đại khái giống như một lớp.

Một mặt phẳng là một lớp gồm tất cả những điểm được xác định duy nhất bởi hai tọa độ, và do đó nó là một đa diện hai chiều.

Tương tự, không gian của hình học tọa độ ba chiều có thể được xem là đa diện ba chiều vì ba tọa độ là cần thiết để cố định những điểm nằm trong đó.

Nếu cần n con số hay tọa độ để cố định mỗi nguyên tố của một đa diện, dù nó là không gian hay một lớp bất kì nào khác, thì nó được gọi là một đa diện n chiều.

Đa diện được cho là không có thuộc tính, ngoại trừ việc nó là một lớp.




#645784 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:13

61. Đó là những đường cong nào?

Quen thuộc nhất trong những đường cong như thế là đường tròn, đường parabol, đường elip và đường hyperbol. Một biểu diễn hình học của mỗi đường cong cùng với phương trình của nó được cho bên dưới.

62. Các đường conic là gì?

Giao tuyến của một hình nón với những mặt phẳng khác nhau được gọi là các đường conic.

Nếu một mặt phẳng cắt qua một hình nón vuông góc với trục của nó thì giao tuyến là một đường tròn.

Nếu mặt phẳng cắt xiên với trục hình nón thì giao tuyến thu được là đường elip.

Nếu mặt phẳng cắt song song với đường sinh của hình nón thì giao tuyến là đường parabol.

Nếu mặt phẳng cắt qua hình nón hai lần thì ta thu được đường hyperbol.

Nếu mặt phẳng cắt qua hình nón hai lần và đồng thời đi qua đỉnh nón, thì ta thu được một cặp đường thẳng xuyên đỉnh.

63. Tính phản xạ của parabol có ý nghĩa gì?

Parabol có một tính chất nổi bật là nếu đặt một nguồn sáng tại tiêu điểm S của nó, thì toàn bộ các tia sáng đi ra từ S, sau khi phản xạ tại parabol, truyền đi song song với trục của nó.

Tính chất này được gọi là tính phản xạ của parabol.

Chính vì tính chất này mà các gương lắp phía sau đèn trước xe hơi được chế tạo có hình paraboloid, tức là hình dạng được tạo ra bằng cách quay parabol xung quanh trục của nó.

Gương parabol giúp người lái xe nhìn thấy xa hơn về phía trước.

64. Tính chất âm học của parabol là gì?

Các tia sáng đi ra từ tiêu điểm bị phản xạ song song với trục của parabol.

Ngược lại, các tia sáng tới song song với trục của parabol sau khi bị phản xạ thì cùng đi qua tiêu điểm.

Vì sóng âm hành xử theo kiểu giống như vậy, nên tính chất âm thanh bị hội tụ tại tiêu điểm được gọi là tính chất âm học của parabol.

Đây là nguyên do ở trong một số phòng trưng bày nghệ thuật, những tiếng thì thầm của ai đó lại được nghe rõ khi bạn đứng ở một chỗ nhất định, còn ở những chỗ khác thì không nghe được.

Chỗ nhất định đó, S, thật ra là tiêu điểm của cấu trúc parabol.

65. Tính chất phản xạ của elip là gì?

Elip có tính chất là các tia sáng đi ra từ một trong hai tiêu điểm, ví dụ như S1, sau khi bị phản xạ tại elip thì đi qua tiêu điểm kia, S2.

Tính chất này được gọi là tính chất phản xạ của elip.

Như vậy, nếu elip được làm từ một dải kim loại sáng bóng, thì các tia sáng đi ra từ tiêu điểm này sẽ đều hội tụ đến tiêu điểm kia.

Một vật đặt tại S2 sẽ được rọi sáng nhờ nguồn sáng đặt tại S1, cho dù S1 và S2 ở khá xa nhau.

66. Tính chất âm học của elip là gì?

Sự phản xạ âm thanh từ tiêu điểm này qua tiêu điểm kia của elip được gọi là tính chất âm học của elip.

Đây là nguyên do vì sao ở một số phòng trưng bày nghệ thuật, người xem đứng tại hai chỗ nhất định có thể nghe được tiếng thì thầm của nhau, cho dù ở giữa họ có rất nhiều người.

67. Động cơ nào thúc đẩy người ta nghiên cứu những đường cong này?

Đó là một chuỗi những sự kiện và khám phá và nhu cầu cấp thiết, khá quan trọng trong số chúng là:

Kepler khám phá rằng các hành tinh chuyển động quanh Mặt trời theo quỹ đạo elip và Galileo* khám phá rằng một hòn đá bị ném đi trong không khí vạch ra một quỹ đạo parabol. Tương tự, các viên đạn bay ra từ nòng súng cũng vạch ra các parabol.

Vì thế, có nhu cầu tính toán những elip này cũng như các parabol mô tả quỹ đạo của viên đạn.

68. Còn những nhu cầu nào khác nữa?

Nền thiên văn học lấy Trái đất tĩnh làm trung tâm không còn đúng nữa, và nền cơ học Hi Lạp cổ đại cũng vậy. Những lí thuyết này cần được đánh giá lại và xét lại.

Sự phát triển nhanh của ngành hàng hải làm phát sinh nhu cầu liên hệ các bản đồ hải trình trên địa cầu với bản đồ phẳng.

Những lĩnh vực khoa học tự nhiên khác cũng có những bài toán tương tự chờ được giải và tính toán chính xác.

69. Tại sao tính chất của những đường conic đã không được khai thác khi mà những người Hi Lạp xưa đã biết rõ về chúng?

Tính chất của các đường conic đã được người Hi Lạp xưa biết rõ từ trước Descartes đến 2000 năm, nhưng chúng chỉ cấu thành nên một bộ phận của hình học. Người ta chưa biết có phương pháp nào sử dụng chúng trong những lĩnh vực khác. Công cụ hệ tọa độ đã thay thế các đường cong bằng phương trình, chúng tương đối dễ xử lí hơn. Và kĩ thuật tọa độ đã mở rộng cửa cho một ngôi nhà đầy châu báu trước đó chưa ai dám mơ tới!

70. Kĩ thuật đại số có là đủ để làm việc với các đường cong hay không?

Không, người ta sớm nhận ra rằng những kĩ thuật này không thể xử lí độ dốc và độ cong, chúng là những tính chất cơ bản của đường cong.




#645783 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:11

51. Hình học xạ ảnh là gì?

Xét một người họa sĩ đứng trước quang cảnh mà anh ta muốn vẽ lại. Ta có thể hình dung cái khung vẽ của anh ta là một màn kính trong suốt xen giữa quang cảnh và mắt của anh ta. Hình vẽ trên khung vẽ hóa ra là hình chiếu của quang cảnh trên màn kính với tâm chiếu nằm tại mắt của người họa sĩ.

Vì khung vẽ thật sự thì không trong suốt và quang cảnh mà người họa sĩ muốn vẽ có thể chỉ nằm trong trí tưởng tượng của anh ta, nên người họa sĩ cần một khuôn khổ toán học để cho phép anh ta miêu tả thế giới thực ba chiều trên một khung vẽ hai chiều.

Hình học xạ ảnh cung cấp một khuôn khổ như thế. Nó nghiên cứu tính chất hình học của những hình vẽ vẫn bất biến dưới những phép chiếu như vậy.

52. Đó là những phép chiếu nào?

Ví dụ quen thuộc nhất của một phép chiếu như vậy là cái bóng do một nguồn sáng điểm tạo ra.

Cái bóng của một hình tròn do một nguồn sáng điểm tạo ra không phải lúc nào cũng tròn. Chúng là những hình elip dẹt ít hoặc dẹt nhiều.

Bóng của một hình vuông có thể là hình bình hành, hoặc là một tứ giác nào đó.

Bóng của một tam giác vuông không phải lúc nào cũng là tam giác vuông.

Những viên gạch lát hình vuông dưới sàn nhà thì trong tranh không được vẽ là hình vuông. Nhưng ấn tượng để lại trong mắt người nhìn vẫn giống như những viên gạch thật.

53. Hình chiếu khác với hình gốc ở những chỗ nào?

Trong hình chiếu do một nguồn điểm gây ra, kích cỡ của các góc, các diện tích và các đoạn thẳng bị biến dạng, nhưng có một số tính chất không bị thay đổi sao cho cấu trúc của hình gốc thường có thể được nhận ra trên khung vẽ.

54. Đó là những tính chất nào?

Đó là những tính chất khá đơn giản:

Hình chiếu của một điểm là một điểm và hình chiếu của một đoạn thẳng là một đoạn thẳng, tức là một đoạn thẳng thì sẽ không bị cong. Như vậy, hình chiếu của một tam giác sẽ luôn luôn là một tam giác, và hình chiếu của một tứ giác sẽ luôn vẫn là tứ giác.

Ba tính chất quan trọng được rút ra từ những tính chất đơn giản này:

(i)                  Nếu một điểm nằm trên một đoạn thẳng thì sau phép chiếu điểm tương ứng sẽ nằm trên đoạn thẳng tương ứng. Tính chất này gọi là tính rơi.

(ii)                Nếu ba điểm trở lên cùng nằm trên một đoạn thẳng, thì hình chiếu tương ứng của chúng cũng sẽ nằm trên một đoạn thẳng. Tính chất này gọi là cộng tuyến.

(iii)               Nếu ba đoạn thẳng trở lên cùng cắt qua một điểm, thì hình chiếu của chúng sẽ cắt qua một điểm. Tính chất này gọi là đồng quy.

55. Hình học xạ ảnh được áp dụng ở đâu?

Hình học xạ ảnh có ứng dụng trong lĩnh vực nhiếp ảnh trên không, kiến trúc và trong các bài tập phối cảnh mà các họa sĩ thường nghiên cứu.

56. Hình học xạ ảnh khác với hình học Euclid ở chỗ nào?

Các định lí của hình học Euclid xét độ lớn của các chiều dài, các góc và các diện tích theo các khái niệm liên quan tương đẳng và đồng dạng.

Đây là những tính chất đo đạc. Chúng xử lí các độ lớn và bất biến dưới những chuyển động nào đó.

Hình học xạ ảnh xét các tính chất chiếu hay các tính chất bất biến dưới phép chiếu, tức là tính tính rơi, cộng tuyến và đồng quy.

57. Có cần thiết phân biệt giữa các tính chất chiếu và tính chất đo đạc hay không?

Sự phân biệt giữa các tính chất đo đạc và tính chất chiếu của các hình đã được nghiên cứu bởi nhà toán học người Anh Cayley. Ông xét toàn bộ vấn đề trên phương diện đại số và đã thống nhất cả hai.

58. Hình học tọa độ là gì?

Hình học tọa độ* là lĩnh vực nghiên cứu hình học bằng phương pháp đại số.

Hình học tọa độ khai thác có hệ thống thực tế là có một sự tương ứng tự nhiên giữa các số thực và các điểm trong không gian.

Lấy một điểm O bất kì nằm trên một đường thẳng. Gọi nó là gốc tọa độ, tức là điểm xuất phát cho mọi phép đo dọc theo đường thẳng đó. Khi ấy, mỗi số thực tương ứng với một điểm trên đường thẳng đó, và ngược lại. Số thực đó được gọi là tọa độ của điểm tương ứng.

Xét hai đường thẳng vuông góc nhau, gọi là hai trục tọa độ, Ox và Oy, cùng đi qua gốc tọa độ O. Khi ấy, vị trí của một điểm P bất kì trong mặt phẳng được xác định bởi khoảng cách x1đến đường thẳng đứng Oy và khoảng cách y1đến đường nằm ngang Ox. Cặp số thực theo trật tự (x1, y1) xác định điểm P trong mặt phẳng, và được gọi là tọa độ của nó.

Hình học tọa độ còn được gọi là hình học giải tích hay hình học tọa độ Descartes để tôn vinh người phát minh ra nó, Rene Descartes.

59. Phải chăng hình học tọa độ là một công cụ mạnh hơn hình học bình thường?

Sức mạnh của hình học tọa độ nằm ở thực tế nó nghiên cứu các đối tượng hình học bằng phương pháp đại số.

Khái niệm tọa độ biến những bài toán hình học thành những bài tính toán theo các đại lượng đại số.

Và các phép tính đại số thì dễ làm hơn là các chứng minh hình học liên quan rất nhiều đến trực giác và kinh nghiệm với các hình vẽ và sơ đồ!

Vì thế, hình học tọa độ xứng đáng được tôn vinh là đã “giải phóng hình học khỏi lệ thuộc vào hình vẽ”.

60. Làm thế nào giải phóng hình học khỏi lệ thuộc vào hình vẽ?

Bằng phương pháp tọa độ, các phương trình đại số đơn giản bậc nhất theo hai biến x và y có được ý nghĩa trực quan và chúng biểu diễn cho những đường thẳng sao cho việc nghiên cứu các đối tượng hình học gọi là đường thẳng được thực hiện thông qua việc nghiên cứu những phương trình như thế. Phương pháp này dễ làm hơn và đáng làm hơn!

Phương trình 2x + 3y = 6, hoặc tương đương là x/3 + y/2 = 1, thu được bằng cách chia hai vế phương trình cho 6, được biểu diễn trực quan bởi đường thẳng AB.

Tương tự, phương trình khái quát cho đường thẳng có dạng như sau

ax + by + c = 0

Các phương trình đại số bậc hai theo hai biến x và y biểu diễn các đường cong trong một mặt phẳng.




#645782 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:10

41. Còn khi xét những khoảng cách lớn trên Trái đất thì sao?

Xét một tam giác lớn trên bề mặt của Trái đất được tạo bởi một cung xích đạo và hai đoạn kinh tuyến, tức là hai đường tròn lớn vẽ từ cực Bắc và kết thúc trên cung này. Xem hình bên dưới:

Hai góc đáy mỗi góc bằng 90o nên tổng ba góc của tam giác cộng lại sẽ lớn hơn 180o.

Khoảng cách ngắn nhất giữa hai điểm bất kì không còn là một đường thẳng mà là một đoạn cung kinh tuyến, cho nên hình học Euclid không còn áp dụng được.

Thật vậy, ngay cả khi hai điểm trên bề mặt Trái đất chỉ cách nhau vài trăm mét, thì việc công nhận độ cong của Trái đất sẽ xác định khoảng cách chính xác giữa chúng.

42. Trái đất phẳng bao nhiêu hay cong bao nhiêu?

Một đường thẳng trong một mặt phẳng được nói là thẳng và không có độ cong, còn trong trường hợp đường tròn thì đường tròn càng nhỏ độ cong của nó càng lớn.

Nếu chúng ta lấy một đường tròn bán kính 1 foot là có độ cong đơn vị, thì độ cong của một đường tròn bán kính 1 yard sẽ bằng một phần ba đơn vị; và với tỉ lệ này thì độ cong của đường tròn lớn trên bề mặt Trái đất sẽ vào khoảng một phần 21 triệu. Độ cong này là quá nhỏ nên một cung của một đường tròn như vậy trên thực tế không thể phân biệt với một đoạn thẳng.

Vì thế, hình học của Trái đất là hình học Euclid đối với những chiều dài hay khoảng cách nhỏ, và là hình học phi Euclid đối với những khoảng cách lớn.

43. Hình học của không gian mà chúng ta đang sống là hình học nào?

Gauss, “ông hoàng toán học”, đã chọn ba đỉnh núi ở xa nhau tạo nên một tam giác và tìm thấy tổng số đo ba góc của tam giác được tạo ra đó là bằng 180o trong giới hạn của sai số thực nghiệm.

Thí nghiệm tỏ ra không thuyết phục bởi vì tam giác mà ông sử dụng là đủ lớn so với hình vẽ trên giấy, nhưng vẫn quá nhỏ so với kích cỡ của vũ trụ.

Nếu thay cho ba ngọn núi ở xa, chúng ta chọn ba ngôi sao ở xa, thì thí nghiệm vẫn không thuyết phục, mặc dù lần này là vì những lí do hoàn toàn khác.

44. Những lí do này là gì?

Vì trong trường hợp này, phép đo góc sẽ phải theo phương tiện tia sáng, và trong hành trình xuyên không gian của chúng, những tia sáng này bị bẻ cong theo độ lớn của trường hấp dẫn mà chúng đi qua, cho nên kết quả của phép đo sẽ cho chúng ta biết về các định luật truyền ánh sáng nhiều hơn là về bản chất của không gian, dù là Euclid hay không.

45. Không gian có ý nghĩa chính xác là gì?

Một quan điểm có thể là không gian hoàn toàn trống rỗng, một khoảng không không có vết tích của vật chất, nhưng trong một không gian như vậy không có cái gì để phân biệt một vị trí hay một phương hướng, cho nên không có vị trí, không có phương hướng và, vì thế, không gian hoàn toàn trống rỗng chẳng gì hơn là một sự trừu tượng.

46. Quan điểm khác thì sao?

Quan điểm khác cho rằng “không gian là hình thức tồn tại của vật chất”, cho nên tính chất của không gian thật sự là tính chất của những liên hệ nhất định của các vật thể, ví dụ, kích cỡ của chúng, vị trí tương hỗ, vân vân.

Theo quan điểm này, không gian thật sự không thể chia tách với vật chất. Vật chất xác định hình học và hình học giải thích cho hiện tượng trước đây quy cho lực hấp dẫn.

Không những vậy, như Einstein chứng minh, không gian không thể tách rời với thời gian, và chúng cùng nhau tạo nên một hình thức tồn tại của vật chất, đó là không-thời gian.

47. Nếu không gian và thời gian được xem như những thực thể riêng biệt thì sao?

Cấu trúc của không-thời gian là phức tạp và không gian không thể tách rời với thời gian ngoại trừ dưới những giả thiết nhất định, trong trường hợp đó không gian hóa ra là Euclid trong những vùng nhỏ so với kích cỡ vũ trụ, nhưng trong những vùng lớn có chứa khối lượng lớn vật chất, thì sự sai lệch khỏi hình học Euclid trở nên rõ nét.

48. Hình học gần đúng của vũ trụ là hình học nào?

Nhiều giả thuyết đã được đặt ra về cấu trúc của vũ trụ xem như một tổng thể, giả sử sự phân bố khối lượng là đồng đều và vũ trụ không tĩnh tại.

Những giả thuyết này đã làm đơn giản hóa vấn đề và cho phép chúng ta có một khái niệm gần đúng của khuôn khổ thật sự của vạn vật.

Dưới những giả thuyết như vậy, một lí thuyết đã được đề xuất bởi nhà vật lí Liên Xô Friedmann cho thấy hình học của vũ trụ trên tổng thể là hình học Lobachewsky.

49. Hình học nào áp dụng cho các hạt sơ cấp?

Giống như trường hợp hình học Euclid không áp dụng được cho những khoảng cách lớn trong vũ trụ, nó cũng không áp dụng được cho những khoảng cách cực nhỏ.

Hình học phi Euclid có thể áp dụng cho những khoảng cách bên trong và giữa các nguyên tử, phân tử, hạt sơ cấp, vân vân.

50. Chỉ có ba môn hình học thôi sao?

Rõ ràng là có thể có vô số môn hình học, bởi vì bắt đầu với những tiên đề bất kì người ta có thể xây dựng nên một môn hình học mới, miễn sao các tiên đề đó không dẫn tới mâu thuẫn.

Một bề mặt mới có thể được tìm thấy là nơi áp dụng cho lí thuyết hình học mới.

Tuy nhiên, một bề mặt càng phức tạp, thì bộ môn hình học xây dựng thích hợp cho nó cũng thật kì cục.




#645781 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:09

31. Vậy một định lí toán học thì có ý nghĩa gì?

Một định lí toán học về căn bản là một xác nhận có điều kiện.

Nó chỉ đúng nếu tập hợp các giả thiết từ đó suy ra nó là đúng.

Nhưng còn chuyện tập hợp các giả thiết đó là đúng hay sai thì định lí không xác nhận.

32. Tại sao? Nguyên nhân là gì?

Nguyên nhân là vì các giả thiết được lập theo các khái niệm, nói đại khái chúng không có ý nghĩa đặc biệt nào, cho nên các giả thiết là đúng hay sai không thể xác nhận được.

33. Phải chăng hình học Euclid không mâu thuẫn với các hình học phi Euclid?

Đúng vậy. Vì một mặt phẳng có độ cong bằng không, nên nếu thay số không vào giá trị của độ cong trong các công thức của các hình học phi Euclid, thì các công thức thu được giống hệt với các công thức của hình học Euclid.

Vì vậy, hình học Euclid có thể xem là một trường hợp đặc biệt của các hình học phi Euclid, chúng vốn khái quát hơn.

34. Một đường thẳng có ý nghĩa gì?

Một cái hiện ra ngay trong đầu là các đường thẳng trên một mặt cầu hay mặt giả cầu thật ra là bị cong và có vẻ không thích hợp gọi chúng là thẳng.

Nhưng tất cả tùy thuộc vào cách chúng ta định nghĩa một đường thẳng.

Một cách định nghĩa một đường thẳng là nhận ra nó là khoảng cách ngắn nhất giữa hai điểm.

35. Định nghĩa này làm đơn giản vấn đề như thế nào?

Bây giờ khoảng cách ngắn nhất giữa hai điểm trên bề mặt của một hình cầu không phải là một đường thẳng mà là một đoạn của đường tròn nằm trên bề mặt của hình cầu đó.

Một đường tròn như vậy được gọi là “đường tròn lớn” và tâm của nó nằm tại tâm của hình cầu.*

* Nếu hai điểm nằm trên bề mặt của hình cầu được nối lại với sự hỗ trợ của một cái thước đâm xuyên qua hình cầu, thì đường thẳng thu được sẽ không còn nằm trên bề mặt của hình cầu nữa.

Nhưng vì đường thẳng đó phải nằm trên bề mặt, nên nó phải đi theo “đường tròn lớn”.

Một đường tròn lớn chia hình cầu thành hai phần bằng nhau. Đường xích đạo là một đường tròn lớn, nhưng các đường vĩ tuyến thì không phải. Một đường kinh tuyến là nửa đường tròn lớn.

Khái quát hóa khái niệm này, đường cong nằm trên một bề mặt và là khoảng cách ngắn nhất giữa hai điểm trên bề mặt đó được gọi là “đường trắc đạc” trên bề mặt đó.

Trên mặt phẳng thì đường trắc đạc là đường thẳng.

36. Đường trắc đạc trên những mặt khác nhau có khác nhau không?

Vâng, đường trắc đạc khác nhau tùy theo mặt nhất định.

Đường trắc đạc trên mặt phẳng thì hướng theo đường thẳng. Hai đường trắc đạc bất kì trên một mặt phẳng cắt nhau tại một điểm, nhưng nếu chúng song song thì chúng không bao giờ cắt nhau.

Đường trắc đạc trên mặt cầu thì hướng theo đường tròn lớn. Trên một mặt cầu, hai đường trắc đạc, cho dù chúng có vẻ song song nhau, luôn luôn cắt nhau tại hai điểm.

Trong trường hợp Trái đất của chúng ta, toàn bộ các đường kinh tuyến là đường trắc đạc. Tại xích đạo, tất cả các kinh tuyến trông song song nhau, nhưng chúng đều cắt nhau tại hai cực.

Các đường trắc đạc trên mặt giả cầu tiến đến càng sát nhau càng tốt, nhưng chúng không bao giờ cắt nhau.

37. Cái gì xác định bản chất của đường trắc đạc?

Bản chất của đường trắc đạc trên một mặt phụ thuộc vào độ cong của mặt đó.

Một mặt phẳng có độ cong bằng không.

Một mặt cầu có độ cong dương không đổi tại mỗi điểm trên mặt của nó.

Bề mặt của một quả trứng có độ cong dương nhưng nó biến thiên từ điểm này sang điểm khác.

Một mặt giả cầu có độ cong âm không đổi.

Một mặt giống như mặt yên ngựa có độ cong âm.

38. Có phải một “đường thẳng” phải kéo dài vô hạn ở cả hai phía không?

Các đường song song trong hình học Euclid không cắt nhau và cho dù kéo dài bao xa về mỗi phía thì chúng vẫn luôn luôn cách nhau một khoảng không đổi. Một đường thẳng, do đó, được cho là kéo dài vô hạn ở cả hai phía.

Riemann đề xuất rằng không có nhu cầu logic nào cho một khái niệm như thế và mọi đường thẳng nếu kéo dài đủ mức có thể quay trở lại trên chúng và có cùng chiều dài giống như các đường kinh tuyến trên bề mặt Trái đất.

Trong trường hợp một hình cầu giống như Trái đất, mỗi kinh tuyến giao cắt với kinh tuyến khác ở hai điểm, đó là cực Bắc và cực Nam, nên mỗi cặp “đường thẳng” luôn luôn cắt nhau và khép kín một diện tích, và không có hai “đường thẳng” nào có thể song song nhau.

39. Nhưng làm thế nào một đường thẳng có thể tuân theo hình học Euclid lẫn hình học Riemann?

Giả thiết ngầm của Euclid ngụ ý rằng một đường thẳng có thể kéo dài ra vô hạn. Theo Riemann, một đường thẳng, nếu kéo dài đủ mức, có thể quay trở lại trên chính nó.

Mâu thuẫn rõ ràng mà Riemann nêu ra là sự khác biệt quan trọng giữa vô hạn và khép kín.

Một đường thẳng có thể khép kín và không vô hạn giống như bề mặt của một quả cầu khép kín nhưng không vô hạn. Một đường thẳng không thỏa mãn yêu cầu nhất quán như thế khớp hoàn toàn với hình học Euclid và hình học Riemann.

40. Cái nào là hình học của Trái đất?

Đối với đa số mục đích thông thường, bề mặt của Trái đất hành xử như thể nó là phẳng. Do đó, để xây dựng nhà cửa, cầu đường, sân chơi thể thao, vân vân, khoảng cách ngắn nhất giữa hai điểm là một đường thẳng và tổng số đo ba góc của một tam giác là 180o, và hình học có thể áp dụng là hình học Euclid.




#645780 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:08

21. Hình học Lobachewsky là gì?

Định đề vừa nói ở trên có vẻ quá hiển nhiên nên người ta chưa từng nghĩ nó có thể hoặc có lẽ nên thay đổi. Nhưng một vài nhà toán học, Lobachewsky là một trong số đó, đã nghĩ tới cái xảy ra khi định đề trên được thay thế bởi định đề sau đây:

Qua một điểm cho trước nằm ngoài một đường thẳng cho trước, có thể vẽ hai đường thẳng khác nhau cùng song song với đường thẳng đã cho.

Chúng ta có thể vẽ một hình như sau, trong đó hai đường thẳng tách biệt được vẽ qua điểm P, một hướng sang trái và một hướng sang phải.

Các nhà toán học tìm thấy rằng giả thiết lạ lẫm này không những không mang lại sai lầm gì mà một hệ quả logic của giả thiết mới còn đưa họ đến với một bộ môn hình học mới trong đó tổng số đo ba góc của một tam giác nhỏ hơn 180 độ.

22. Nó chẳng phải là một giả thiết lạ hay sao?

Nói cho hợp lí thì chẳng có gì sai khi giả sử người ta có quyền tự do lựa chọn những giả thiết căn bản bất kì miễn là chúng không mâu thuẫn nhau.

23. Nhưng hai đường thẳng trong hình vẽ ở trên trông không có vẻ gì song song với đường thẳng đã cho!

Nguyên nhân hai đường thẳng trong hình vẽ ở trên, một hướng sang phải và một hướng sang trái, không có vẻ song song với đường thẳng đã cho là vì hình được vẽ trong một mặt phẳng bình thường, nơi chỉ có hình học Euclid đúng còn hình học mới thì không!

24. Còn có ai khác đi tới quan điểm mới trên?

Ba nhà toán học khác nhau, Gauss người Đức, Bolyai người Hungary và Lobachewsky người Nga đã khám phá ra bộ môn hình học phù hợp logic này khá độc lập nhau, và gần như đồng thời, khoảng năm 1826.

25. Vậy tại sao lại gọi là hình học Lobachewsky?

Gauss, nhà toán học nổi tiếng nhất thời ấy, không dám mạo hiểm với những quan niệm mới này vì sợ ảnh hưởng đến danh tiếng của ông.

Bolyai thì dũng cảm xông pha, nhưng ông đã không phát triển những khái niệm mới sâu sắc và trọn vẹn như Lobachewsky.

Lobachewsky là người đầu tiên giới thiệu các khái niệm một cách rộng rãi, và còn phát triển chúng sau đó trong một số bài báo. Vì thế, bộ môn hình học mới được gọi là hình học Lobachewsky.

26. Hình học Riemann là gì?

Riemann, một nhà toán học người Đức, vào khoảng năm 1854, đã nghĩ tới việc thay thế định đề hai đường song song bằng định đề sau đây:

Qua một điểm cho trước không thuộc một đường thẳng cho trước, không vẽ được đường thẳng nào song song với đường thẳng đã cho.

Một hệ quả logic của giả thiết này đưa ông đến với một bộ môn hình học trong đó tổng ba góc của một tam giác lớn hơn 180 độ.

Bộ môn hình học này được gọi là hình học Riemann.

27. Những định lí nào đúng trong cả ba bộ môn hình học?

Những định lí hình học Euclid không phụ thuộc vào định đề hai đường song song thì vẫn không thay đổi. Ví dụ, các định lí sau đây là đúng trong cả ba bộ môn hình học:

(i)                  Hai góc đối đỉnh thì bằng nhau.

(ii)                Hai góc đáy của một tam giác cân thì bằng nhau.

28. Đâu là chỗ khác nhau giữa ba bộ môn hình học?

So sánh dưới đây nêu rõ những chỗ khác biệt.

Trong hình học Euclid:

(i)                  Tổng ba góc của một tam giác luôn bằng 180 độ.

(ii)                Hai đường thẳng song song thì không bao giờ gặp nhau, cho dù có kéo dài ra bao xa, và luôn luôn cách nhau một khoảng không đổi.

(iii)               Hai tam giác có thể có ba góc bằng nhau nhưng diện tích khác nhau. Hai tam giác như vậy được gọi là tam giác đồng dạng, và tam giác này là hình phóng to của tam giác kia.

(iv)              Qua một điểm nằm ngoài một đường thẳng, chỉ vẽ được một đường vuông góc với đường thẳng đó.

(v)                Tỉ số của chu vi của một đường tròn và đường kính của nó bằng p.

Trong hình học Lobachewsky:

(i)                  Tổng ba góc của một tam giác luôn nhỏ hơn 180o, và lượng nhỏ hơn tỉ lệ với diện tích của tam giác.

(ii)                Hai đường thẳng song song thì không bao giờ gặp nhau, nhưng khoảng cách giữa chúng nhỏ dần đi khi kéo dài chúng ra xa.

(iii)               Chỉ hai tam giác bằng nhau về diện tích mới có ba góc bằng nhau, cho nên hai tam giác có diện tích khác nhau không bao giờ có thể đồng dạng. Trong bộ môn hình học này, khi một tam giác tăng diện tích, thì tổng số đo ba góc của nó giảm.

(iv)              Qua một điểm nằm ngoài một đường thẳng, chỉ vẽ được một đường vuông góc với đường thẳng đó giống như trong hình học Euclid.

(v)                Tỉ số của chu vi của một đường tròn và đường kính của nó luôn lớn hơn p, và tỉ số đó càng lớn khi diện tích vòng tròn càng lớn.

Trong hình học Riemann:

(i)                  Tổng ba góc của một tam giác luôn lớn hơn 180o.

(ii)                Mỗi cặp đường thẳng nằm trong một mặt phẳng phải cắt nhau.

(iii)               Tam giác càng lớn thì góc càng lớn.

(iv)              Có thể vẽ vô số đường vuông góc từ một điểm đến một đường thẳng cho trước.

(v)                Tỉ số của chu vi của một đường tròn và đường kính của nó luôn nhỏ hơn p, và giảm khi diện tích của vòng tròn tăng.

29. Bộ môn hình học nào đúng?

Mỗi bộ môn hình học đều đúng nhưng chỉ trên những mặt mà nó có nghĩa thôi.

Hình học Euclid áp dụng cho những hình vẽ trên một tờ giấy hoặc trên một mặt phẳng.

Hình học phi Euclid của Riemann rất gần đúng cho những hình vẽ trên bề mặt của một hình cầu.

Hình học phi Euclid của Lobachewsky đúng cho những hình vẽ trên một mặt gọi là giả cầu. Xem bên dưới:

Mặt giả cầu là mặt tròn xoay thu được bằng cách quay đường cong gọi là tractrix xung quanh trục thẳng đứng Oy.

Các tam giác vẽ trên những mặt khác nhau được thể hiện trong hình bên dưới:

Mỗi môn hình học hoạt động tốt trên mặt tương ứng của nó.

30. Vì một môn hình học được sáng tạo chỉ dựa trên hệ thống tiên đề của nó, vậy đâu là khả năng phụ thuộc của nó vào thế giới vật chất?

Đặc điểm của không gian vật lí của chúng ta được xác định chính xác bởi hình học Euclid nên trong hơn 2000 năm áp dụng nó luôn được xem là chân lí tuyệt đối về không gian vật lí.

Chỉ đến khi khám phá ra các môn hình học phi Euclid người ta mới nhận ra rằng hình học không phải là chân lí về không gian vật lí. Nó chỉ là một nghiên cứu của những không gian có thể có.

Những môn hình học khác nhau, được xác định bởi những hệ tiên đề khác nhau, do đó, không phải là những mô tả của thực tại.

Chúng đơn thuần là những mô hình mà thôi.

Từ quan điểm này, một cái khá may mắn là mô hình Euclid mô tả thực tại khá đầy đủ.




#645779 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:07

11. Phải chăng các giả thuyết không cần phù hợp với kinh nghiệm hằng ngày?

Các giả thuyết không nhất thiết phù hợp với kinh nghiệm hằng ngày, bởi vì phát triển một cấu trúc trên nền tảng của những giả định mới và chắc chắn chỉ có thể đưa đến những khám phá mới tinh và những tiến bộ quan trọng.

Những giả định cực kì chắc chắn đó đã đưa đến khám phá ra những hình học khác ngoài hình học Euclid trong trường hợp rồi chúng ta sẽ thấy.

12. Các giả thuyết được sử dụng như thế nào và dẫn tới cái gì?

Một vài giả định hoặc quy tắc được nêu ra lúc bắt đầu là bình thường và không thể tránh khỏi nên không thể nào dự đoán hết những hệ quả của chúng. Từ đây, các quy tắc được vạch ra phải ăn khớp và từ đó xâu chuỗi, cứ thế cho đến khi đi tới kết quả cuối cùng, và nó thường là bất ngờ.

Người ta cảm thấy có động lực mạnh mẽ để xét lại chuỗi ý tưởng nhưng như thế chỉ khẳng định lại kết quả cuối cùng mà thôi!

13. Những khái niệm căn bản của hình học Euclid là gì?

Trong hình học Euclid, điểm và đường là những khái niệm căn bản. Một điểm được nói là không có độ lớn, và một đường thì không có bề rộng.

Nhưng đây là những mô tả gợi mở chứ không phải những định nghĩa toán học.

14. Các điểm và đường trong hình học khác như thế nào với các đối tác vật chất của chúng?

Khái niệm điểm là một đối tượng rất nhỏ có hiện thân vật chất là một chấm bút chì. Một đường thẳng tự hiện thân ở một sợi chỉ bị kéo căng hoặc một tia sáng.

Điểm và đường trong hình học là cái trừu tượng từ chấm bút chì và đường kẻ bút chì trong kinh nghiệm hằng ngày.

15. Công dụng của sự trừu tượng ấy là gì?

Ưu điểm từ những trừu tượng như thế là các điểm và các đường trong hình học có những tính chất đơn giản hơn nhiều so với các chấm và các đường vật chất. Ví dụ, hai chấm bút chì đủ to có thể được nối lại bởi nhiều đường kẻ bút chì, nhưng nếu hai cái chấm có kích cỡ càng lúc càng nhỏ, thì toàn bộ các đường kẻ trông hầu như giống hệt nhau và chúng ta chẳng gặp khó khăn gì trong việc nhận thức tiên đề hình học rằng có một và chỉ một đường thẳng có thể được vẽ giữa hai điểm bất kì.

16. Các giả thiết của hình học Euclid là gì?

Các giả thiết của Euclid như sau:

1.        Qua hai điểm bất kì, luôn luôn vẽ được một đường thẳng.

2.        Đường thẳng có thể kéo dài vô hạn.

3.        Với tâm bất kì và bán kính bất kì, luôn luôn vẽ được một đường tròn.

4.        Mọi góc vuông đều bằng nhau.

5.        Nếu hai đường thẳng tạo thành với một đường thẳng thứ ba hai góc trong cùng phía có tổng nhỏ hơn 180 độ thì chúng sẽ cắt nhau về phía đó.

17. Các tiên đề của hình học Euclid là gì?

Các tiên đề của Euclid như sau:

1.        Hai cái cùng bằng cái thứ ba thì bằng nhau.

2.        Thêm những cái bằng nhau vào những cái bằng nhau thì được những cái bằng nhau.

3.        Bớt đi những cái bằng nhau từ những cái bằng nhau thì được những cái bằng nhau.

4.        Trùng nhau thì bằng nhau.

5.        Toàn thể lớn hơn một phần.

18. Tiên đề khác với giả thiết như thế nào?

Các tác giả hiện đại thường không nhớ sự phân biệt của Euclid giữa tiên đề và giả thiết, họ sử dụng những tên gọi này nhầm lẫn và gọi chúng là những giả thiết căn bản.

19. Euclid thu được gì từ một tập hợp nhỏ gồm những giả thiết căn bản như thế?

Chỉ sử dụng vài giả thiết căn bản này, Euclid đã chứng minh hàng trăm định lí, nhiều trong số chúng nổi tiếng, và đi đến xếp thứ tự các định lí.

Khái niệm chứng minh, cái cấu thành tinh thần căn bản của toán học, do Euclid nêu ra.

Vì các chứng minh phải được thực hiện hoàn toàn trong khuôn khổ các giả thiết, cho nên sự chọn lựa những giả thiết căn bản của Euclid thật sự là đáng nể và là thành tựu của thiên tài.

20. Định đề hai đường song song là gì?

Giả thiết thứ năm của Euclid đã nói ở trên được gọi là định đề hai đường song song. Một dạng tương đương của định đề trên là như sau:

Qua một điểm cho trước nằm ngoài một đường thẳng cho trước, ta vẽ được một và chỉ một đường thẳng song song với đường thẳng đã cho.

Đây là “định đề hai đường song song” nổi tiếng. Nó thể hiện sự thiên tài của Euclid vì đã nhận ra sự cần thiết của nó.

Một hệ quả logic của định đề này là Định lí Pythagoras phát biểu rằng tổng ba góc của một tam giác luôn bằng 180 độ.




#645778 Tổng quát về toán học (p1)

Gửi bởi DangHongPhuc trong 21-07-2016 - 09:05

Chương 1

 

Hình học và các loại hình học

 

1. Có bao nhiêu loại hình học?

 

Chủ yếu gồm ba loại. Nhưng có thể có vài loại.

 

2. Ba loại vừa nói là ba loại nào?

 

Hình học Euclid, hình học Lobachewski, và hình học Riemann.

 

3. Có cái gì đặc biệt khiến chúng khác nhau à?

 

Vâng. Trong hinh học Euclid, tổng số đo ba góc của một tam giác luôn bằng 180o, nhưng trong hình học Lobachewski nó luôn nhỏ hơn 180o, còn trong hình học Riemann nó luôn lớn hơn 180o.

 

4. Vậy thì ba loại đó liên tục mâu thuẫn với nhau rồi!

 

Không, chúng đồng thời tồn tại trong không khí khá hòa bình.

 

5. Hinh học Euclid là gì?

 

Hình học dạy ở nhà trường trong đó các hình vẽ và sơ đồ được vẽ trên một tờ giấy hoặc một bảng đen bình thường được gọi là hình học Euclid để tôn vinh nhà toán học Euclid.

 

Ông sinh sống vào khoảng năm 300 trước Công nguyên ở Syria nhưng có gốc gác Hi Lạp.

 

6. Euclid đã có đóng góp gì cho Hình học?

 

Ông đã tổng hợp toàn bộ kiến thức hình học tích lũy cho đến thời đại của ông thành một dạng có hệ thống và logic và biên soạn nó thành 13 tập sách được đặt tên là “Các nguyên tố”.

 

Ông đã phát triển hình học là một cấu trúc logic.

 

7. Một cấu trúc logic là gì?

 

Trong một cấu trúc logic, một vài thuật ngữ và một vài tiền đề không chứng minh được giả định, và toàn bộ phần còn lại được phát triển dựa trên logic.

 

Những thuật ngữ không định nghĩa được gọi là những khái niệm căn bản, và những tiền đề không chứng minh được gọi là “sự thật nửa-hiển nhiên”, tiên đề, giả thuyết, hay đơn giản là giả thiết.

 

8. Làm thế nào những thuật ngữ không định nghĩa và những tiền đề không chứng minh lại có chỗ đứng trong một cấu trúc logic?

 

Trong bất kì một nghiên cứu có hệ thống nào, cái tự nhiên được trông đợi là chúng ta định nghĩa tỉ mỉ toàn bộ những thuật ngữ của chúng ta sao cho chúng ta biết mình đang nói về cái gì. Nhưng mỗi thuật ngữ phải được định nghĩa bằng cái gì đó đã được định nghĩa trước đó, và chính thuật ngữ này lại phải được định nghĩa, và cứ thế; cho nên hành trình đi ngược dòng này phải dừng lại ở đâu đó. Vì thế, có một vài thuật ngữ không định nghĩa được xem là hiển nhiên và với chúng định nghĩa là không cần thiết.

 

Tương tự, để chứng minh một định lí là đúng, ta cần chỉ ra rằng nó tuân theo một tiền đề nào đó đã được chứng minh trước đó, và chính tiền đề này hóa ra lại cần phải chứng minh, và cứ thế. Hành trình lần ngược này một lần nữa phải dừng lại ở đâu đó nên có một số tiền đề được chấp nhận là đúng và đối với chúng chứng minh là không cần thiết.

 

9. Phải chăng những tiền đề không chứng minh hay giả thuyết không chịu ràng buộc nào cả?

 

Chúng chịu hai ràng buộc quan trọng. Thứ nhất là các giả thuyết phải nhất quán. Điều này có nghĩa là các phát biểu mâu thuẫn sẽ không được gợi đến bởi những giả thuyết. Chúng phải không dẫn tới “A là B” và “A không phải là B”.

 

Thứ hai là các giả thuyết phải hoàn chỉnh. Điều này có nghĩa là mỗi định lí của hệ thống logic phải được suy ra từ các giả thuyết.

 

10. Có bất kì ràng buộc nào khác nữa không?

 

Cái hợp lí là các giả thuyết là độc lập. Nghĩa là không có giả thuyết nào được suy luận ra từ giả thuyết khác.

 

Đây là cái đáng khao khát cho lí giải kinh tế học và cái đẹp nhưng nội hàm của một giả thuyết không độc lập không làm vô hiệu hệ thống. Việc phát hiện một giả thuyết như thế đôi khi chẳng dễ dàng gì.

 

Và, tất nhiên, các giả thuyết phải đơn giản và không chứa quá nhiều con số; nếu không hệ thống logic được phát triển sẽ không có lợi gì nhiều.




#645075 IMO 2016: Việt Nam xếp thứ 11 toàn đoàn với 1 Vàng, 4 Bạc, 1 Đồng

Gửi bởi DangHongPhuc trong 15-07-2016 - 19:29

Năm nay VN xui quá, toàn bị trúng mấy bài tổ hợp. Mà có ai biết tại sao VN lại yếu tổ hợp không vậy

theo mình thì ko phải xui mà là vì phần đấy VN học chưa chắc




#645058 Các phương trình đẹp nhất mọi thời đại

Gửi bởi DangHongPhuc trong 15-07-2016 - 15:14

17 phương trình thay đổi thế giới này được Ian Stewart, một khoa học gia, đề xuất trong cuốn sách cùng tên của mình xuất bản năm 2013.

1. Định lý Pitago

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Phương trình này đã trở thành nền tảng cho hiểu biết của nhân loại về hình học. Nó mô tả mối quan hệ giữa các cạnh của một tam giác vuông trên mặt phẳng. Theo đó, tổng bình phương của độ dài hai cạnh góc vuông chính bằng bình phương độ dài cạnh huyền.

Mối quan hệ này được sử dụng để phân biệt hình học phẳng Euclide bình thường mà bạn học trong trường phổ thông với hình học phi Euclide. Ví dụ, một tam giác vuông khổng lồ được vẽ trên bề mặt Trái Đất sẽ không tuân theo định lý Pitago. Lí do bởi bề mặt Trái Đất không phẳng, nó là mặt hình cầu.

2. Logarit

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Logarit là nghịch đảo của hàm mũ. Một Logarit cho bạn biết số mũ để nâng một cơ số trong hàm mũ để đạt được giá trị xác định. Ví dụ, Logarit cơ số 10 của 1 kí hiệu là log(1) = 0 vì 1 = 100, log(10) = 1 vì 10 = 101, log(100) = 2 vì 100 =102.

Phương trình trên đây thể hiện một trong những ứng dụng hữu ích nhất của Logarit, nó chuyển phép nhân thành phép cộng. Trước khi máy tính kỹ thuật số phát triển, đây là cách phổ biến nhất cho các nhà khoa học nhân 2 số cực lớn với nhau. Nó giúp tăng tốc tính toán trong vật lý, thiên văn học và kỹ thuật. Nếu không có phương trình này, có lẽ thế giới sẽ phát triển chậm đi hàng thế kỷ.

3. Vi tích phân

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Công thức trên thể hiện định nghĩa của đạo hàm trong vi tích phân. Đạo hàm thể hiện tốc độ mà một đại lượng đang thay đổi. Ví dụ đơn giản, bạn có thể đã biết vận tốc là đạo hàm của vị trí. Nó thể hiện sự thay đổi vị trí nhanh hay chậm. Nếu bạn đang đi bộ với tốc độ 5 km/h, sau mỗi giờ bạn sẽ thay đổi vị trí của mình trên quãng đường 5 km.

Điều này là đặc biệt quan trọng bởi các nhà khoa học luôn quan tâm đến làm thế nào mọi thứ và đại lượng thay đổi. Đạo hàm cùng với tích phân tạo nền tảng cho giải tích, hỗ trợ đắc lực cho các nhà khoa học hiểu và đo lường sự thay đổi.

4. Định luật vạn vật hấp dẫn

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Phương trình trên mô tả lực hấp dẫn giữa hai vật, F. Trong đó G là một hằng số vũ trụ, khối lượng của hai vật lần lượt là m1 và m2. Khoảng cách giữa hai đối tượng là d.

Định luật của Newton là một nền tảng đáng ghi nhận trong lịch sử khoa học. Nó giúp con người giải thích một cách hoàn hảo sự di chuyển của các hành tinh. Tính chất phổ quát của phương trình này trải dài từ các hiện tượng trên Trái Đất, trong Hệ Mặt Trời tới bất kì đâu trong vũ trụ.

Định luật vạn vật hấp dẫn của Newton đã đứng vững trong suốt 200 năm cho đến khi nó bị thay thế bởi thuyết tương đối rộng của Einstein.

5. Căn bậc hai của -1

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Các nhà toán học liên tục muốn mở rộng tập hợp số của họ. Càng nhiều số, toán học càng có thể mô tả nhiều hơn. Mỗi lần mở rộng một được tập hợp số, sức mạnh của toán học đều tăng lên đáng kể. Trên thực tế, tập hợp số đã bắt đầu đi từ số tự nhiên, thêm vào đó số âm, phân số và số thực. Căn bậc hai của -1, thường được kí hiệu là i, hoàn tất tập hợp số bằng cách tạo ra các số phức.

Về mặt toán học, số phức vô cùng “thanh lịch”. Đại số sẽ hoạt động một cách hoàn hảo nếu có sự góp mặt của số phức. Điều đó có nghĩa là bất kể một phương trình nào cũng sẽ có nghiệm. Trước đó, người ta đã không thể tìm nghiệm cho phương trình dạng x2 + 4 = 0. Nó sẽ được kết luận là vô nghiệm nếu giải trên tập số thực. Tuy nhiên, nó lại có nghiệm phức: căn của -2.

Vi tích phân cũng có thể mở rộng đến các số phức. Bằng cách đó, toán học tìm thấy sự đối xứng tuyệt vời và tính chất của những con số này. Những đặc tính khiến số phức góp phần lớn vào nhiều lĩnh vực khoa học kỹ thuật như điện tử, xử lí tín hiệu, điện từ học, cơ học lượng tử...

6. Đặc trưng Euler

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Khối đa diện là phiên bản 3 chiều của một đa giác. Một đa diện sẽ có các đỉnh và góc. Các đường kết nối các đỉnh là cạnh và diện tích bên ngoài bao phủ khối đa diện là các mặt của nó.

Bây giờ nếu một khối đa diện có 8 đỉnh, 12 cạnh và 6 mặt. Nếu bạn cộng số đỉnh với số mặt rồi trừ đi số cạnh bạn sẽ nhận được kết quả bằng 2: 8 + 6 -12 =2.

Công thức Euler nói rằng miễn là đa diện của bạn tồn tại, phép tính trên luôn cho kết quả bằng 2 cho dù nó có 4, 8, 12, 20 hay bất kì bao nhiêu mặt.

7. Phân phối chuẩn

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Phân phối chuẩn, hay còn gọi là phân phối Gauss, là một phân phối xác suất cực kì quan trọng trong nhiều lĩnh vực. Bạn sẽ nhìn thấy chúng là những đường cong hình chuông quen thuộc và phổ biến trong thống kê.

Đường cong chuẩn được sử dụng trong vật lý, sinh học và các ngành khoa học xã hội để mô hình các thuộc tính đa dạng. Một trong những lí do khiến đường cong này trở nên phổ biến bởi nó mô tả hành vi của các nhóm lớn nhiều quy trình độc lập.

8. Phương trình sóng

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Đây là một phương trình vi phân riêng phần tuyến tính bậc hai mô tả các sóng trong vật lý. Các sóng được mô tả có thể từ sự rung của dây đàn guitar, gợn nước trong hồ sau khi ném một hòn đá cho đến ánh sáng phát ra từ một bóng đèn sợi đốt.

Phương trình sóng là một phương trình vi phân sớm. Các kỹ thuật được phát triển cho phương trình này mở rộng sự hiểu biết của chúng ta tới các phương trình khác.

9. Biến đổi Fourier

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Biến đổi Fourier là công cụ cần thiết để con người hiểu được những cấu trúc sóng phức tạp hơn, ví dụ như lời nói của chúng ta. Nếu bạn có một tập hợp sóng phức tạp và lộn xộn như một bản ghi âm hai người đang nói chuyện, biến đổi Fourier sẽ cho phép sắp xếp lại chúng thành tập hợp những sóng đơn giản. Nhờ đó, việc phân tích sẽ trở nên dễ dàng hơn rất nhiều.

Biến đổi Fourier có rất nhiều ứng dụng khoa học, ví dụ như trong vật lý, số học, xử lí tín hiệu, xác suất, thống kê, mật mã, quang học, hình học...

10. Hệ phương trình Navier-Stokes

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Giống như phương trình sóng, đây là một phương trình vi phân. Nó miêu tả dòng chảy của chất lỏng, chất khí, gọi chung là chất lưu. Ví dụ, phương trình Navier-Stokes có thể được sử dụng cho dòng nước chảy trong ống, lưu lượng khí trên cánh máy bay hay đơn giản là khói tỏa ra từ một điếu thuốc.

Có một điều rất thú vị với phương trình Navier-Stokes, mặc dù được đưa ra từ năm 1822 và đã được khai thác gần 2 thế kỷ, phương trình này vẫn tồn tại những khía cạnh mà chưa một nhà toán học nào có thể giải đáp. Viện toán học Clay đã đưa phương trình Navier-Stokes vào danh sách “Bảy vấn đề quan trọng nhất trong toán học còn bỏ ngỏ”. Họ treo một giải thưởng 1 triệu USD cho ai giải quyết được nó.

11. Phương trình Maxwell

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Hệ phương trình Maxwell gồm 4 phương trình vi phân mô tả hành vi và mối quan hệ của điện trường (E) và từ trường (H), gọi chung là trường điện từ.

Giống với định luật Vạn vật hấp dẫn của Newton thuộc cơ học cổ điển, hệ phương trình Maxwell cũng chỉ có thể mô tả trường điện từ ở một quy mô lớn. Nó có thể giải thích cách mà dòng điện hàng ngày của chúng ta hoạt động.

Mọi thứ thuộc về cơ học cổ điển cũng như điện từ cổ điển sẽ thất bại khi mô tả những hiện tượng ở thế giới vi mô, nơi chúng ta cần đến vật lý hiện đại. Ngày nay, cơ học lượng tử với lý thuyết của nó về điện từ trường đã có thể thay thế phương trình Maxwell. Mặc dù vậy, nó vẫn có thể được sử dụng trong những tính toán gần đúng hàng ngày.

12. Định luật thứ hai của nhiệt động lực học

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Nguyên lý này khẳng định rằng trong một hệ khép kín, entropy (hiểu một cách đơn giản là sự hỗn loạn) chỉ có thể giữ nguyên hoặc tăng lên. Nghe có vẻ đơn giản nhưng nó chính là một hòn đá tảng chặn đường chúng ta đến với tương lai của những thiết bị viễn tưởng.

Định luật 2 nhiệt động học có thể được sử dụng để dự đoán số phận vũ trụ. Nó giải thích cho sự hỗn loạn của vũ trụ từ sau vụ nổ Big Bang và dẫn đến “cái chết nhiệt” của nó, khi vạn vật cân bằng trên một trạng thái nhiệt độ.

Ví dụ gần gũi hơn trong đời sống, định luật 2 nhiệt động lực học là lời giải thích cho câu hỏi tại sao nhiệt chỉ có thể truyền từ vật nóng sang vật lạnh mà không có chiều ngược lại. Khi bạn bỏ đá vào tách cà phê nóng, đá tan và cà phê nguội đi.

Định luật 2 nhiệt động học là lí do câu hỏi tại sao không phải viên đá sẽ đóng băng tách cà phê. Nó cũng là chiếc búa to lớn có thể đập tan mọi ý tưởng dẫn đến một động cơ vĩnh cửu.

Bên cạnh đó, định luật thứ hai nhiệt động học là một trong số ít định luật vật lý không cho phép tồn tại dòng chảy ngược lại của thời gian. Trong khi nhiều nhà khoa học đang cố gắng chứng minh thời gian có một chiều ngược lại bởi không một định luật cơ bản nào của vật lý hiện đại chi phối trạng thái vũ trụ, khiến thời gian nhất thiết cứ phải trôi về phía trước. Họ luôn vấp phải “hòn đá thứ hai” của nhiệt động lực học.

Mặc dù đã có những lý thuyết gần đây được đưa ra nhằm gạt bỏ vai trò của định luật thứ hai nhiệt động học trong xác định chiều thời gian, chúng vẫn chưa thể được hoàn thiện và chứng minh.

13. Sự tương đương của khối lượng và năng lượng

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Hãy nhìn vào phương trình cực kỳ đơn giản này:E=mc2. Nó được Einstein đưa ra vào năm 1905 trong một bài báo khoa học với tiêu đề “Quán tính của một vật có phụ thuộc vào năng lượng trong nó không?”.

Như đã nói, một phương trình càng đơn giản bao nhiêu nó càng đẹp bấy nhiêu. Phương trình E=mc2được mệnh danh là công thức không thể nổi tiếng hơn. Dòng chữ ngắn gọn này mang một sức mạnh khủng khiếp, mở đầu cho những ý tưởng về năng lượng nguyên tử.

Theo đó, Einstein chứng minh năng lượng và khối lượng vốn chỉ là một. Chúng ở hai trạng thái khác nhau và khối lượng chính là dạng “đặc lại” của năng lượng. Chỉ cần nửa cân bất kỳ chất gì cũng đang chứa trong nó năng lượng tương đương vụ nổ của hơn 7 triệu tấn thuốc nổ TNT.

Phương trình E=mc2 giải thích tại sao Uranium lại có thể liên tiếp, trong hàng triệu năm, bắn ra những tia li ti chạy với tốc độ khủng khiếp, tại sao mặt trời và các ngôi sao có thể tuôn ánh sáng và sức nóng trong hàng tỷ tỷ năm. Nó còn cho chúng ta thấy năng lượng ghê gớm chứa trong nhân nguyên tử và tiên đoán chỉ cần một lượng rất nhỏ Uranium cũng đủ tạo ra một trái bom có sức công phá hủy diệt cả một thành phố.

14. Phương trình Schorodinger

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Đây là một phương trình nền tảng của cơ học lưởng tử. Trong khi thuyết tương đối rộng giải thích vũ trụ và các hiện tượng ở quy mô cực lớn, phương trình Schrodinger miêu tả hành vi của các nguyên tử và hạt hạ nguyên tử. Hiểu được thế giới nhỏ bé này quan trọng và vĩ đại chẳng khác nào cách chúng ta hiểu về vũ trụ.

Phương trình Schrodinger mô tả sự biến đổi trạng thái lượng tử của một hệ vật lý theo thời gian. Nó có thể được sử dụng để thay thế cho định luật Newton và biến đổi Galileo trong cơ học cổ điển. Phương trình Schrodinger là một trụ cột trong cơ học lượng tử còn cơ học lượng tử là nền tảng của năng lượng hạt nhân, công nghiệp bán dẫn, máy tính, laser...

Cũng phải nói rằng cơ học lượng tử và thuyết tương đối rộng là hai lý thuyết khoa học thành công nhất trong lịch sử nhân loại. Tất cả quan sát về mọi hiện tượng của chúng ta ngày nay đều phù hợp với dự đoán của hai lý thuyết này.

15. Lý thuyết thông tin

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Phương trình này được dùng để mô tả entropy thông tin. Nó là một khái niệm mở rộng của entropy trong nhiệt động lực học đã nói phía trên.

Entropy thông tin mô tả mức độ hỗn loạn trong một tín hiệu, nó chỉ ra có bao nhiêu thông tin trong tín hiệu, có thể là của một cuốn sách, một dòng chữ hay một bức ảnh JPEG đăng trên mạng xã hội.

Entropy thông tin cho ta biết được chúng ta có thể nén một nội dung xuống mức độ bao nhiêu mà không mất đi ý nghĩa của nó. Đo entropy thông tin là tiền đề của nghiên cứu toán tin, mở ra cách mà chúng ta có thể kết nối và giao tiếp thông qua mạng internet ngày nay.

16. Lý thuyết hỗn loạn

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Phương trình này được gọi là bản đồ Logistic. Nó được về xuất và phổ biến từ những năm 1976 bởi nhà sinh vật học Robert May, mô tả quá trình thay đổi theo thời gian của một đại lượng.

Nếu bạn để ý vào phương trình này, vế trái của nó thể hiện trạng thái tiếp theo của đại lượng x, nó phụ thuộc vào đại lượng x hiện tại và một hằng số k chọn trước. Đối với một số giá trị của k, phương trình cho thấy hành vi hỗn loạn.

Nghĩa là nếu chúng ta bắt đầu từ 1 giá trị x, quá trình này sẽ phát triển theo một cách. Nhưng nếu chọn một giá trị khởi điểm cho dù rất gần x, nó cũng phát triển theo một cách rất khác.

Đó gọi là sự nhạy cảm của hành vi hỗn loạn với điều kiện ban đầu. Rất nhiều lĩnh vực có thể phải sử dụng mô hình này, ví dụ đơn giản như thời tiết. Một sự thay đổi dù nhỏ trong khí quyển cũng có thể dẫn đến một loạt các hiện tượng thời tiết phức tạp vài ngày sau đó.

Thậm chí một hiệu ứng nổi tiếng mang tên “Hiệu ứng cánh bướm” đã được đề xuất nói rằng một con bướm vỗ cánh ở lục địa này hoàn toàn có thể gây ra một cơn bão phía bên kia lục địa khác. Nó dần đi vào văn hóa đương đại và trong các tác phẩm có đề cập tới quan hệ nhân quả.

17. Phương trình Black-Scholes

 

17-phuong-trinh-sau-day-da-thay-doi-lich
 

 

Chúng ta lại gặp một phương trình vi phân ở đây. Black-Scholes là phương trình mô tả cách các chuyên gia tài chính và nhà đầu tư định giá cho chứng khoán phái sinh. Hiểu một cách đơn giản nó là một phần quan trọng của hệ thống tài chính hiện đại, với nhiều vai trò khác nhau như phân tán rủi ro, bảo vệ lợi nhuận hoặc tạo lợi nhuận.

Phương trình Black-Scholes cho phép những chuyên gia tài chính tính toán giá trị của các sản phẩm tài chính, dựa trên đặc tính phái sinh và các tài sản cơ sở.




#645057 Euclidea - Game dựng hình bằng thước thẳng và compa

Gửi bởi DangHongPhuc trong 15-07-2016 - 15:01

câu 12.2 làm thế nào vậy




#645035 $\pi=4$?

Gửi bởi DangHongPhuc trong 15-07-2016 - 09:51

Em thì nghĩ vậy này. Cứ tiếp tục vô hạn lần thì sẽ tạo ra những đường gấp khúc trên biên đường tròn, vì thế không thể nào trùng với biên của đường tròn.

nếu làm vô hạn lần thì nó sẽ trỏ thành hình tron bạn ạ, còn nếu là dg gấp khúc thì là do bạn làm với số lần hữu hạn(mặc dù là rất nhiều).