Đến nội dung

Katnatte

Katnatte

Đăng ký: 13-04-2019
Offline Đăng nhập: 15-04-2019 - 19:46
-----

Trong chủ đề: Topic tổng hợp các bài toán về phương trình nghiệm nguyên.

13-04-2019 - 21:40

 

Bài 3. Giải phương trình nghiệm nguyên: $x^3-x^2y+3x-2y-5=0$

(Được đăng bởi yellow)


Lời giải. (Phạm Quang Toàn)Ta có $y= \frac{x^3+3x-5}{x^2+2}= x+ \frac{x-5}{x^2+2}$.
Để $x,y \in \mathbb{Z}$ thì $x^2+2 \mid x-5$, suy ra $x^2+2 \mid (x-5)(x+5)$, nên $x^2+2 \mid 27$ hay $x^2+2 \in \{ \pm 1; \pm 3; \pm 9; \pm 27 \}$.
Lại có $x^2+2 \ge 2 \; \forall x \in \mathbb{Z}$ nên chỉ có thể $x^2+2 \in \{ 3,9,27 \}$.
Ta tìm được $x= \pm 1, \pm 5$. Thử lại thì thấy chỉ có $x=-1,x=5$ thỏa mãn. Đến đây dễ tìm $y$.
Phương trình có nghiệm $$\boxed{(x;y) \in \{ (-1;-3),(5;5_ \}}$$

Bài 4. Giải phương trình nghiệm nguyên
a, $3x^5+x^3+6x^2-18x=2001$
b, $x^5-5x^3+4x=24(5y+1)$




(Đăng bởi MyLoVeForYouNMT)


Lời giải. (lời giải của MIM) a, Ta có: $3x^5+6x^2-18x$ chia hết cho $3$, $2001$ cũng chia hết cho $3$ nên $x^3$ chia hết cho $3 \Rightarrow$ $x^3$ chia hết cho $9 \Rightarrow$ vế trái chia hết cho $9$, mà vế phải không chia hết cho $9$, phương trình trên không có nghiệm nguyên
b, Ta có $x^5 - 5x^3 + 4x =x(x+1)(x-1)(x-2)(x+2)$ chia hết cho $5$ ( vì $x,x+1,x-1,x-2,x+2$ là 5 số tự nhiên liên tiếp nên chia hết cho 5) .Mặc khác, vế phải không chia hết cho $5$. vậy PT vô nghiệm.

Bài 5. Tìm nghiệm nguyên của phương trình $$x(x^2+x+1)=4y(y+1) \qquad (1)$$

(Đăng bởi MyLoVeForYouNMT)


Lời giải. (lời giải của Secrets In Inequalities VP) Ta có $$ (1) \Leftrightarrow (x^{2}+1)(x+1)= (2y+1)^{2}$$
Vì $2y+1$ là số lẻ nên $x^2+1$ và $x+1$ là hai số lẻ.
Đặt $(x^2+1,x+1)=d$, thì $d$ lẻ.
Lại có $x+1 \ \vdots d \Rightarrow x^2-1 \ \vdots d$ mà $x^2+1 \ \vdots d$ nên $2 \ \vdots d$. Do đó $d=1$.
Vậy $(x^2+1,x-1)=1$, nên $x^2+1$ và $x+1$ là hai số chính phương.
Ta thấy $x^2$ là số chính phương và $x^2+1$ cũng là số chính phương nên chỉ có thể $x=0$. Khi đó $y=0$ Ta tìm được nghiệm nguyên duy nhất của phương trình là $$\boxed{(x;y)=(0;0)}.$$

Chú ý. Bài này ta phải chú ý đến kết quả:
Nếu cho hai số nguyên dương $a,b$ nguyên tố cùng nhau thỏa mãn $ab=x^2$ với $x \in \mathbb{N}^*$ thì $a,b$ là hai số chính phương.

Bài 6. Tìm nghiệm nguyên của phương trình $

$y^2z^2+(y^3-2xy)z+x(x-y)+y^2z^2(y-1)=0$$


(Đăng bởi MIM)


Lời giải. (của xuanmai1998)
$y^2z^2+(y^3-2xy)z+x(x-y)+y^2z^2(y-1)=0$

$\Leftrightarrow (yz-x+\frac{y}{2})^2=y^2z(1-y)(1+z)+\frac{y^2}{4}$

$\Leftrightarrow \frac{y^2}{4}=y^2z(y-1)(1+z)+(yz-x+\frac{y}{2})^2$

$\Rightarrow \frac{y^2}{4}\geq y^2z(y-1)(1+z)$

Nếu $y\geq 2$ thì $z(z+1)(y-1)\geq 2$ (do $z\geq 1$)

$\Rightarrow y^2z(z+1)(y-1)\geq \frac{y^2}{4}$, mâu thuẫn. Do đó $y=1$
Thay $y=1$ vào $\frac{y^2}{4}=y^2z(y-1)(1+z)+(yz-x+\frac{y}{2})^2$ ta có $(z-x+\frac{1}{2})^2=\frac{1}{4}\Leftrightarrow \left[ \begin{array}{l}
x=z \\
x=z+1 \\
\end{array} \right.$

Vậy, các nghiệm của pt đã cho là $(k,1,k);(k+1,1+k)$ với $k$ nguyên dương tùy ý.

Bài 7. Giải phương trình nghiệm nguyên sau: $$2x^6+y^2-3x^3y=320$$

(Đăng bởi Nguyen Viet Khanh 6c)



Lời giải. Cách 1. (của tramyvodoi) Viết phương trình đã cho dưới dạng : $\left ( x^{3} \right )^{2} + \left ( x^{3} - y \right )^{2} = 320$.
Đặt $u = x^{3}$ $,$ $v = x^{3} - y$. Ta có : $u^{2} + v^{2} = 320$. Do $320$ là số chẵn nên $u$ và $v$ có cùng tính chẵn lẻ. Giả sử $u$ $,$ $v$ cùng lẻ, thế thì $u^{2} \equiv 1 \left ( \mod {4} \right )$ và $v^{2} \equiv 1 \left ( \mod {4} \right )$ $\Rightarrow$ $u^{2} + v^{2} \equiv 2 \left ( \mod {4} \right )$ $\Rightarrow$ $u^{2} + v^{2} \neq 320$, vô lý. Vậy $u$ và $v$ cùng chẵn.
Đặt $u = 2u_{1}$ $,$ $v = 2v_{1}$, thay vào ta được $u_{1}^{2} + v_{1}^{2} = 80$. Lập luận tương tự, ta lại có $u_{1}$ và $v_{1}$ cùng chẵn. Tiếp tục, lại đặt $u_{1} = 2u_{2}$ $,$ $v_{1} = 2v_{2}$, và lại suy ra $u_{2}$ và $v_{2}$ cung chẵn $\left ( u_{2}^{2} + v_{2}^{2} = 20 \right )$.
Đặt $u_{2} = 2u_{3}$ $,$ $v_{2} = 2v_{3}$, ta lại được $u_{3}^{2} + v_{3}^{2} = 5$. Do $u$ là lập phương của một số nguyên và $u = 2^{3}u_{3}$, nên suy ra $u_{3}$ cũng là lập phương của một số nguyên. Từ đó các cặp $u_{3}$ $,$ $v_{3}$ thỏa mãn phương trình trên là : $\left ( 1, 2 \right ) ; \left ( -1, 2 \right ) ; \left ( 1, -2 \right ) ; \left ( -1, -2 \right )$.
Vậy dễ dàng tìm được các nghiệm $\left ( x, y \right )$ của phương trình đã cho là : $\left ( 2, -8 \right ) ; \left ( 2, 24 \right ) ; \left ( -2, -24 \right ) ; \left ( -2, 8 \right )$.

Cách 2. (của duaconcuachua98) Ta có pt đã cho tương đương với $$(x^{3})^{2}+(x^{3}-y)^{2}=320$$
Vì $x,y$ nguyên nên $320$ là tổng của $2$ số chính phương
Mà 320 viết thành tổng của 2 số chính phương chỉ có trường hợp là $320=16^{2}+8^{2}$ hoặc $320=16^2+(-8)^2$.
Mà $x^{3}$ là lập phương của 1 số nguyên nên $x^{3}=8$ hoặc $x^3=-8$, suy ra $x=2$ hoặc $x=-2$
+)Với $x=2$ ta có: $64+(8-y)^{2}=320$, suy ra $y=24$ hoặc $y=-8$
+)Với $x=-2$ ta có: $64+(-8-y)^{2}=320$, suy ra $y=8$ hoặc $y=-24$.

(Sẽ cập nhật tiếp ...)

 

câu 5 còn nghiệm y=-1