Đến nội dung

Oai Thanh Dao nội dung

Có 57 mục bởi Oai Thanh Dao (Tìm giới hạn từ 28-04-2020)



Sắp theo                Sắp xếp  

#588310 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 11-09-2015 - 08:50 trong Tài liệu, chuyên đề, phương pháp về Hình học

Mở rộng định lý Lester, định lý Parry, định lý Zeeman-Gossard

File gửi kèm




#587426 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 05-09-2015 - 17:02 trong Tài liệu, chuyên đề, phương pháp về Hình học

Một giả thuyết giống định lý Cayley–Bacharach

 

Giả thuyết 1: Cho sáu điểm $A, A', B, B', C, C'$ cùng nằm trên một đường bậc hai và đường bậc ba (nào đó). Cho một đường bậc hai đi qua $B, B', C, C'$ và cắt đường bậc ba đó tại $A_1, A_2$. Đường bậc hai đi qua $C, C', A, A'$ và cắt đường bậc ba đó tại $B_1, B_2$. Đường bậc ba đi qua $A, A', B, B'$ và cắt đường bậc ba tại $C_1, C_2$. Khi đó sáu điểm $A_1,A_2, B_1, B_2, C_1, C_2$ nằm trên một đường bậc hai. Nếu ta chọn trước các điểm $A_1, B_1, C_1$ thẳng hàng thì các điểm $A_2, B_2, C_2$ cũng phải thẳng hàng.

 

Giả thuyết 2: Cho một đường conic cắt một đường bậc ba tại 6 điểm $A, B, C, D, E, F$. Cho một đường conic khác đi qua ba điểm $A,B,C$ cắt đường bậc ba tại $G, H, I$, cho đường conic khác đi qua ba điểm $D, E, F$ cắt đường bậc ba tại $J, Q, K$. Khi đó sáu điểm $G, H, I, J, Q, K$ sẽ nằm trên một đường conic.

 

Chứng minh giả thuyết 2:
Đây là cách chứng minh cho giả thuyết 2 của một giáo sư (mà mình không hiểu) nhưng cứ trình bày lại ra đây để mọi người tham khảo: 

Áp dụng luật nhóm, nếu như một đường bậc hai giao với một đường bậc ba tại sáu điểm thì tổng sáu điểm phải bằng không. Ta có A+B+C+D+E+F=0; A+B+C+G+H+I=0; D+E+F+J+Q+K=0 => G+H+I+J+Q+K=0 => Sáu điểm G, H, I, J, Q, K nằm trên một đường conic. Giả thuyết mạnh hơn được chứng minh.

 

Giả thuyết tổng quát: Cho hai đường cong (đa thức) cắt nhau tại $\frac{d^2+3d}{2}+\frac{l^2+3l}{2}+2$ điểm. Nếu $\frac{d^2+3d}{2}+1$ điểm nằm trên đường cong bậc $d$ thì $\frac{l^2+3l}{2}+1$ điểm còn lại sẽ nằm trên đường cong bậc $l$




#587327 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 05-09-2015 - 00:08 trong Tài liệu, chuyên đề, phương pháp về Hình học

Giả thuyết: Cho sáu điểm $A, A', B, B', C, C'$ nằm trên một đường conic. Đường conic qua bốn điểm $B, B', C, C'$ cắt đường thẳng $AA'$ at $A_1, A_2$. Đường conic qua bốn điểm $C, C', A, A'$ cắt đường thẳng $CC'$  tại $B_1, B_2$. Đường conic qua bốn điểm $A, A', B, B'$ cắt đường thẳng $CC'$ tại $C_1, C_2$. Khi đó sáu điểm $A_1,A_2, B_1, B_2, C_1, C_2$ nằm trên một đường conic. Do đó nếu chọn trước $A_1, B_1, C_1$ thẳng hàng thì các điểm $A_2, B_2, C_2$ cũng thẳng hàng.

 

Great problem.png




#586367 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 31-08-2015 - 11:12 trong Tài liệu, chuyên đề, phương pháp về Hình học

Mở rộng định lý Pascal và định lý Brianchon

 

Cho sáu đường tròn $(O_1)$, $(O_2)$, $(O_3)$, $(O_4)$, $(O_5)$, $(O_6)$. Các đường tròn $(O_i)$, $(O_{i+1})$ cắt nhau tại các  điểm tại hai điểm $A_i$, $A'_i$ với $i=1, 2, 3, 4, 5, 6$ (Ở đây chúng ta lấy module 6). Chứng minh rằng nếu sáu điểm $A_1$, $A_2$, $A_3$, $A_4$, $A_5$, $A_6$ nằm trên một đường tròn và $A'_1$, $A'_2$, $A'_3$, $A'_4$, $A'_5$, $A'_6$  nằm trên một đường tròn khác.

1. Khi đó giao điểm của các cặp đường tròn $(O_1)$ và $(O_4)$,  $(O_2)$ và $(O_5)$, $(O_3)$ và $(O_6)$ (nếu tồn tại) sẽ nằm trên một đường tròn.

2. Các đường thẳng $O_1O_4, O_2O_5, O_3O_6$ sẽ đồng quy (Vấn đề này đã được công bố tại Problem 3845, Volum 39, trên tạp chí Crux Mathemticorum)

http://tube.geogebra.org/m/1539785

1.png

TẠI SAO TÔI PHÁT HIỆN RA KẾT QUẢ NÀY?

Định lý Pascal là một định lý nổi tiếng đặt theo tên nhà bác học Blaise Pascal (1623-1662). Nội dung như sau:

Cho một lục giác nội tiếp khi đó giao điểm của các cặp cạnh đối diện nằm trên một đường thẳng.

Ngày 29/08/2015 anh Nguyễn Ngọc Giang có đăng trên facebook một kết quả là mở rộng của định lý Pascal như sau:

Giang.jpg

Tôi nhìn vào cách mở rộng của anh Giang tôi thấy rằng sẽ có một lục giác đối xứng với đường tròn ngoại tiếp lục giác $ABCDEF$ ban đầu ở bên kia trục của đường thẳng d. Với kinh nghiệm "CHƠI" hình học phẳng mấy năm nay tôi hiểu rằng kết quả này có thể mở rộng thành một định lý tổng quát hơn bằng cách ta thay lục giác đối xứng đó trong kết quả của anh Giang bằng một lục giác nội tiếp bất kỳ, ở vị trí bất kỳ trong mặt phẳng. Tôi nghĩ như vậy và tôi kiểm tra qua phần mềm thấy ý tưởng của tôi hoàn toàn đúng đắn. Quan sát kỹ hơn tôi thấy rằng cấu trúc hình học này thực ra tôi đã tìm ra và đăng trên tạp chí Crux vào tháng 5/2014(mà tôi vẫn gọi là vấn đề (hoặc định lý) tám đường tròn. Vốn được tôi biết đến như là một mở rộng của định lý Brianchon (một định lý kép của định lý Pascal).

Nội dung mở rộng định lý Pascal và định lý Brianchon như sau:

Cho sáu đường tròn $(O_1)$, $(O_2)$, $(O_3)$, $(O_4)$, $(O_5)$, $(O_6)$. Các đường tròn $(O_i)$, $(O_{i+1})$ cắt nhau tại các  điểm tại hai điểm $A_i$, $A'_i$ với $i=1, 2, 3, 4, 5, 6$ (Ở đây chúng ta lấy module 6). Chứng minh rằng nếu sáu điểm $A_1$, $A_2$, $A_3$, $A_4$, $A_5$, $A_6$ nằm trên một đường tròn và $A'_1$, $A'_2$, $A'_3$, $A'_4$, $A'_5$, $A'_6$  nằm trên một đường tròn khác.

1.png

1. Mở rộng định lý Pascal: Khi đó giao điểm của các cặp đường tròn $(O_1)$ và $(O_4)$,  $(O_2)$ và $(O_5)$, $(O_3)$ và $(O_6)$ (nếu tồn tại) sẽ nằm trên một đường tròn (1)

 

Khi nào đường tròn này suy biến thành đường thẳng Pascal? Ở đây tôi chỉ ra hai cách để đường tròn này suy biến thành đường thẳng Pascal như sau:

Cách 1: Xây dựng như cách của anh Giang.

Cách 2: Nếu cho đường tròn qua $A'_1$, $A'_2$, $A'_3$, $A'_4$, $A'_5$, $A'_6$ suy biến thành một điểm đặt tên là điêm $M$, khi đó rõ ràng $(O_1)$, $(O_2)$, $(O_3)$, $(O_4)$, $(O_5)$, $(O_6)$ đều đi qua $M$. Giả sử các giao điểm còn lại của của $(O_1)$ và $(O_4)$,  $(O_2)$ và $(O_5)$, $(O_3)$ và $(O_6)$ là $A, B, C$ như vậy theo kết quả (1) $A, B, C, M$ nằm trên một đường tròn. Bây giờ nếu ta cho điểm M cứ tiến tới vô cùng khi đó đường tròn này sẽ biến thành một đường thẳng và $A, B, C$ chính là giao điểm của ba cặp cạnh đối diện của lục giác $A_1A_2A_3A_4A_5A_6$.

2. Mở rộng định lý Brianchon: Các đường thẳng $O_1O_4, O_2O_5, O_3O_6$ sẽ đồng quy (Vấn đề này đã được công bố tại Problem 3845, Volum 39, trên tạp chí Crux Mathemticorum)

Khi nào kết quả trên thu về định lý Brianchon? Ở đây tôi chỉ ra hai cách để kết quả trên suy biến thành định lý Brianchon.

Cách 1: Dựng hình sao cho các điểm Ai trùng với Ai' khi đó sẽ có phát biểu là:

Cho sáu đường tròn  $(O_1)$, $(O_2)$, $(O_3)$, $(O_4)$, $(O_5)$, $(O_6)$, giả sử các đường tròn $(O_i)$ tiếp xúc $(O_{i+1})$ (chúng ta lấy Modulo 6) và sáu điểm tiếp xúc này nằm trên một đường tròn khi đó đường thẳng  $O_1O_4, O_2O_5, O_3O_6$ đồng quy. Thực sự dễ dàng thấy rằng định lý Brianchon là trường hợp đặc biệt của kết quả này.

Cách 2: Cho $A'_1$, $A'_2$, $A'_3$, $A'_4$, $A'_5$, $A'_6$ suy biến thành một điểm (trùng nhau) đặt tên là điểm $M$ cho điểm này trùng với tâm đường tròn ngoại tiếp $A_1A_2A_3A_4A_5A_6$  sau đó vị tự tỉ số 2 ta sẽ có ngay định lý Brianchon.




#585779 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 29-08-2015 - 19:28 trong Tài liệu, chuyên đề, phương pháp về Hình học

Cho một đường conic $S$ và điểm $P$ trên mặt phẳng, ba đường thẳng qua P cắt conic lần lượt cắt đường conic tại các điểm $A, A'; B, B'; C, C'$. Nếu $D$ nằm trên đường thẳng cực của $P$ hoặc $D$ nằm trên đường conic thì $A'D, B'D, C'D$ lần lượt cắt ba cạnh $BC, CA, AB$ tại ba điểm $A_0, B_0, C_0$ thẳng hàng. Hơn thế bốn điểm $A_0, B_0, C_0, P$ thẳng hàng khi và chỉ khi $D$ nằm trên đường conic.

 

Kết quả trên là mở rộng của các định lý sau:

 

1. Định lý Droz-Farny,

2. định lý Goormaghtigh,

3. định lý đường thẳng Đào (hẹp),

4. định lý Zaslavsky,

5. định lý Colling,

6. định lý Simsson,

7. Vấn đề Adam Bliss

 

Kết quả trên được chứng minh trong các bài báo của:

* Nguyen Ngoc Giang, A proof of Dao theorem, Global Journal of Advanced Research on Classical and Modern Geometries, ISSN: 2284-5569, Vol.4, (2015), Issue 2, page 102-106
* Son Tran Hoang (2014), A synthetic proof of Dao's generalization of Goormaghtigh's theorem. Global Journal of Advanced Research on Classical and Modern Geometries, volume 3, pages 125–129, ISSN 2284-5569

* O.T.Dao 2013, Two Pascals merge into one, Cut-The-Knot

* Geoff Smith (2015). 99.20 A projective Simson line. The Mathematical Gazette, 99, pp 339-341. doi:10.1017/mag.2015.47
 




#582625 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 17-08-2015 - 16:30 trong Tài liệu, chuyên đề, phương pháp về Hình học

Vấn đề: Dual của định lý Đào về sáu tâm đường tròn ngoại tiếp (đây là đường tròn nội tiếp).

 

Cho một lục giác nội tiếp, khi đó đường thẳng nối tâm các đường tròn nội tiếp các tam giác tạo bởi hai cạnh và chung đường chéo chính sẽ đồng quy.

 

http://tube.geogebra.org/m/1488371

 

1.png

 

2.png




#580218 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 09-08-2015 - 23:34 trong Tài liệu, chuyên đề, phương pháp về Hình học

Dual của định lý Maxwell.

Cho tam giác $ABC$, và đường thẳng $L$. Đường thẳng $L$ cắt ba cạnh $BC, CA, AB$ tại $A_1, B_1, C_1$. Gọi $A'B'C'$ la tam giác trong mặt phẳng đó sao cho $B'C', C'A', A'B'$ là song song với $AA_1, BB_1, CC_1$. Chứng minh rằng ba đường thẳng đi qua  $A', B', C'$ và lần lượt song song với $BC,CA,AB$ sẽ cắt ba cạnh $B'C', C'A', A'B'$ tại ba điểm thẳng hàng.

 

1.png




#579830 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 08-08-2015 - 20:59 trong Tài liệu, chuyên đề, phương pháp về Hình học

Mở rộng định lý Sondat:

 

Cho tam giác $ABC$, cho $P$ là một điểm bất kỳ trên mặt phẳng, cho đường thẳng $d$ cắt ba cạnh tam giác tại $A_0$, $B_0$, $C_0$ ba đường thẳng tương ứng qua $A_0,B_0,C_0$ và song song với $AP, BP, CP$ tạo thành tam giác $A_1,B_1,C_1$. Theo định lý Maxwell thì ba đường thẳng qua $A_1, B_1, C_1$ và song song với $BC,CA,AB$ một cách tương ứng lại sẽ đồng quy tại một điểm ta gọi điểm này là $P_1$. Khi đó đường thẳng $d$ chi đôi đoạn thẳng $PP_1$. Trong trường hợp $P$ là trực tâm vấn đề này là định lý Sondat.

 

A generalization Sondat theorem.png

http://tube.geogebra.org/m/1467027

https://groups.yahoo...s/messages/2673




#578654 Giả thuyết về sự tăng bậc dẫn đến mất nghiệm của phương trình nghiệm nguyên

Đã gửi bởi Oai Thanh Dao on 04-08-2015 - 22:50 trong Toán học hiện đại

Phiên bản cuối cùng của giả thuyết

File gửi kèm




#578077 Giả thuyết về sự tăng bậc dẫn đến mất nghiệm của phương trình nghiệm nguyên

Đã gửi bởi Oai Thanh Dao on 03-08-2015 - 10:15 trong Toán học hiện đại

Giả thuyết của anh không đúng, thử với $95800^4+217519^4+414560^4=422481^4$ (R. Frye 1988).

Thực ra, năm 1967, L. J. Lander, T. R. Parkin, and John Selfridge đã đưa ra một giả thuyết, mở rộng cho định lý Fermat lớn:

 

Nếu $k>3$ và $\sum_{i=1}^{n}a_i^k= \sum_{i=1}^mb_j^k$ trong đó $a_i \ne b_j$ với mọi thì $1 \le i \le n, 1 \le j \le m$ có nghiệm nguyên dương thì $m+n \ge k$.

 

Anh có thể xem thêm tại Euler's sum of powers conjecture.

 

Giả thuyết của anh chắc có thể đúng nếu chỉnh điều kiện từ $k \ge m+n$ thành $k>m+n$.

 

Cảm ơn em. Giáo sư Đào Hải Long cũng cho anh biết thông tin trên, và đưa đường link :

 

https://en.wikipedia...idge_conjecture




#577540 Giả thuyết về sự tăng bậc dẫn đến mất nghiệm của phương trình nghiệm nguyên

Đã gửi bởi Oai Thanh Dao on 01-08-2015 - 19:20 trong Toán học hiện đại

1. Quan sát:
 

Cho hai hàm số liên tục $f(x)$ và $g(x)$ với $x \in [a,b]$, khi đó khả năng tồn tại một giá trị $x_0$ thực để $f(x_0)=g(x_0)$ là cao hơn so với khả năng tồn tại giá trị nguyên $y_0$ để $f(y_0)=g(y_0)$. Điều này dễ dàng hình dung qua đồ thị về giao điểm của hai hàm số liên tục và giao điểm của hai hàm số rời rạc. Đối với một đa thức khi bậc của đa thức cao lên thì độ rời rạc của đa thức $f(x)$ ($x$ nguyên) càng cao và dẫn đến giá trị $f(x)+f(y)=f(z)$ với $x,y,z$ nguyên càng trở lên khó khăn. Theo chiều hướng đó khi bậc của đa thức $k$ tăng đến một mức độ nào đó thì sẽ dẫn đến phương trình $f(x)+f(y)=f(z)$ hoàn toàn trở lên vô nghiệm. Xuất phát từ nguyên lý đó tôi đưa ra một giả thuyết như sau(chú ý giả thuyết sau chỉ là một cách để cố gắng thể hiện kết quả trong quan sát trên):

 

2. Giả thuyết: Cho $a$ là một số nguyên khác $0$, $m,n$ là hai số nguyên dương khác nhau, $g(x)$ là một đa thức bất kỳ cho trước, đặt $f(x)=g(x)+ax^k$, khi đó tồn tại một hằng số nguyên dương $k_0$ để với mọi $k \geq k_0$ thì phương trình:
$$f(x_1)+f(x_2)+....+f(x_n)=f(y_1)+....+f(y_m)$$
không có nghiệm nguyên dương khác một.

 

Chú ý: Tôi thêm chữ khác 1 vào để loại bỏ trường hợp tầm thường cho phù hợp với ý tưởng xuất phát là độ rời rạc của đa thức tăng lên khi bậc của đa thức tăng lên vì với x=1 thì f(1) không thay đổi khi ta chỉ thay đổi bậc của đa thức. Ngoài ra phản biện tại #2 của Zaraki là cho phiên bản version 1

 

File gửi kèm




#574934 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 24-07-2015 - 09:34 trong Tài liệu, chuyên đề, phương pháp về Hình học

Mở rộng định lý đường thẳng Steiner và đường tròn Miquel

Cho $ABC$ là một tam giác, Cho $P_1$ là một điểm bất kỳ trong mặt phẳng. Cho $L$ là đường thẳng cắt $BC, CA, AB$ tương ứng tại $A_0,B_0,C_0$. Định nghĩa $A_1$ là một điểm trên mặt phẳng sao cho $B_0A_1$ song song $CP_1$, $C_0A_1$ song song với $BP$. Định nghĩa $B_1, C_1$ tương tự. 
 
1. (Mở rộng đường thẳng Steiner) Hãy chỉ ra  $A_1, B_1, C_1, P_1$ thẳng hàng.
 
2. (Mở rộng đường tròn Miquel). Định nghĩa $A_2,B_2,C_2,P_2$ là điểm liên hợp đẳng giác của $A_1,B_1,C_1,P_1$ lần lượt tương ứng với các tam giác $AB_0C_0, BC_0A_0, CA_0B_0$ và $ABC$ (respectively). Hãy chỉ ra $A_2,B_2,C_2,P_2$ nằm trên đường tròn.
 



#568020 $\cos 2x+\cos x.(2-\cos a-\cos b)+\sin x.(...

Đã gửi bởi Oai Thanh Dao on 25-06-2015 - 08:02 trong Phương trình - Hệ phương trình - Bất phương trình

Bạn Quang Dương có hỏi tôi về việc chứng minh phương trình sau có nghiệm trong khoảng $(-\pi,\pi)$.

$\cos 2x+\cos x.(2-\cos  a-\cos b)+\sin x.(\sin a+\sin b)+1-\cos a-\cos b=0$, trong đó $x$ là ẩn và $a,b$ là tham số.

Theo tôi thì cách làm thông thường như biết đổi lượng giác, quy về phương trình đa thức.... có thể sẽ bế tắc.

Chúng ta cũng biết Một kết quả well-known trong giải tích như sau:

Định lý: Nếu như $f(a).f(b)<0$ và hàm số $f(x)$ liên tuc trên $[a,b]$ thì ít nhất có một nghiệm trên $(a,b)$.

Tuy nhiên trong một chừng mực nào đó thì ta không áp dụng ngay được định lý trên vào đặc biệt với các hàm phức tạp, hoặc chứa tham số, không dễ nhẩm hoặc tính được f(a), f(b). Tôi đưa ra một ý tưởng(thầy Trần Nam Dũng và thầy Nguyễn Hùng Sơn đã nói rằng ý tưởng của mệnh đề sau cũ) sau để chứng minh sự tồn tại nghiệm của phương trình trên.

Mệnh đề: Cho hàm số $f(x)$ liên tục trên đoạn $[a,b]$, và $f(a+\epsilon)*f(b-\epsilon)<0$ với một $\epsilon>0$ và nhỏ bao nhiêu tùy ý thì hàm số $f(x)=0$ có ít nhất một nghiệm trên khoảng $(a,b)$.

 

1.jpg

 

Mong các bạn cho lời giải khác?




#567895 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 24-06-2015 - 18:07 trong Tài liệu, chuyên đề, phương pháp về Hình học

Lời giải cho vấn đề tám đường tròn, Proposed by Đào Thanh Oai, solution by Luis Gonzalez

File gửi kèm




#567695 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 23-06-2015 - 17:45 trong Tài liệu, chuyên đề, phương pháp về Hình học

Cách xác định $A_1$ còn mờ ám. Vì có hai vị trí $A_1$ (vị trí còn lại nằm ở cung đối diện). Tương tự với $B_1,C_1,...$

Thực ra anh cũng nhận ra điều đó(nhưng lười viết), cảm ơn em nhé. Anh bổ sung như sau:

Nếu đường tròn $A_1$ như hình vẽ thì tất cả các đường tròn Thebault tương ứng với $B_1,C_1,...,F_1$ còn lại như hình vẽ.
Nếu đường tròn tương ứng với $A_1$ phía đối diện thì tất cả các đường trờn tương ứng với $B_1,C_1,...,F_1$ cũng nằm ở phía đối diện
Nếu đường tròn tương ứng với $A_1$ nằm ngoài thì tất cả các đường tròn tương ứng $B_1,C_1,...,F_1$ cũng năm phía ngoài.(nằm ngoài cũng có hai trường hợp)

 




#567330 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 21-06-2015 - 20:12 trong Tài liệu, chuyên đề, phương pháp về Hình học

Vấn đề mở rộng định lý Feuerbach–Luchterhand

 

Vấn đề được nêu trong file đính kèm

 

File gửi kèm  June-14-2014-Feuerbach-Luchterhand.pdf   106.14K   544 Số lần tải




#567329 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 21-06-2015 - 20:02 trong Tài liệu, chuyên đề, phương pháp về Hình học

Vấn đề của một lục giác lồi nội tiếp và sáu đường tròn Thebault.

 

Cho lục giác $ABCDEF$ lồi nội tiếp đường tròn $(O)$. Gọi $A_1,B_1,C_1,D_1,E_1,F_1$ lần lượt là các tiếp điểm chung của sáu đường tròn Thebault $(FA,BC,(O))$, $(AB,CD,(O))$, $(BC,DE,(O))$, $(CD,EF,(O))$, $(DE,FA,(O))$, $(EF,AB,(O))$ với $(O)$. Hãy chứng minh $A_1D_1, B_1E_1, C_1F_1$ đồng quy.

 

1.png

http://tube.geogebra.org/m/1352263




#564600 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 09-06-2015 - 15:05 trong Tài liệu, chuyên đề, phương pháp về Hình học

Mở rộng định lý Napoleon và vấn đề Thebault II

Cho lục giác $ABCDEF$ sao cho $AD,BE,CF$ có chung trung điểm. Dựng ba tam giác đều $AGB,CHD,EIF$ cùng ra ngoài (hoặc cùng vào trong) khi đó $GHI$ là tam giác đều.
1.png



#563019 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 02-06-2015 - 13:54 trong Tài liệu, chuyên đề, phương pháp về Hình học

Hình vẽ của mở rộng định lý Lester(#20).

 

Ký hiệu trong hình vẽ. $X_4$ là trực tâm, $X_{3}$ là tâm ngoại tiếp, $X_{13}$, $X_{14}$ là hai điểm Fermats

 

1.png




#558083 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 06-05-2015 - 20:00 trong Tài liệu, chuyên đề, phương pháp về Hình học

Mở rộng đường tròn Lester với đường Neuberg cubic.

 

Đường Neuberg cubic: Cho tam giác $ABC$, một điểm $P$ là điểm trên đường Neuberg cubic của  $ABC$ nếu thỏa mãn với $P_a,P_b,P_c$ là ba điểm đối xứng của $P$ qua ba cạnh $BC,CA,AB$ thì $AP_a, BP_b, CP_c$ sẽ đồng quy tại một điểm, ta gọi điểm này là $Q$. 

 

Mở rộng định lý đường tròn Lester: Bốn điểm gồm 2 điểm Fermat, P, Q được định nghĩa như trên nằm trên một đường tròn.




#556593 Một giả thuyết về bất đẳng thức trong không gian m chiều

Đã gửi bởi Oai Thanh Dao on 27-04-2015 - 17:09 trong Đại số tuyến tính, Hình học giải tích

Với không gian hai chiều $f(n,m)=\frac{n}{m}=\frac{n}{2}$ 




#556536 Một giả thuyết về bất đẳng thức trong không gian m chiều

Đã gửi bởi Oai Thanh Dao on 27-04-2015 - 08:27 trong Đại số tuyến tính, Hình học giải tích

Cho $X_1,X_2,X_3,.....,X_n$ là $n$ điểm trên mặt cầu trong không gian Euclid m chiều. Khi đó chúng tôi  đưa ra giả thiết sau:
 
$$\prod_{i,j}^{C_n^2}||X_i-X_j|| \leq n^{f(n,m)} ||r||^{C_n^2}$$
 
Trong đó: $r$ là bán kính mặt cầu
 

Dấu bằng xảy ra khi các điểm $X_1,X_2,X_3....,X_n$ thỏa mãn điều kiện gì sẽ được chúng tôi làm rõ?

 

Biểu thức quan hệ $f(n,m)$ sẽ được chúng tôi làm rõ?

 
Tác giả: Đào Thanh Oai và Quang Dương

 

Giả thuyết trên được chúng tôi phát triển từ bất đẳng thức quen thuộc trong hình học tam giác:

 

$\sin A.\sin B. \sin C \leq 3.\sqrt{3}/8$




#553075 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 10-04-2015 - 21:52 trong Tài liệu, chuyên đề, phương pháp về Hình học

Dao Thanh Oai, Equilateral triangles and Kiepert perspectors in complex numbers, 105--114.

 

 

File gửi kèm  FG201509.pdf   94.99K   458 Số lần tải




#552590 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 09-04-2015 - 08:17 trong Tài liệu, chuyên đề, phương pháp về Hình học

Liên quan đến định lý lá cờ Anh viết cùng thầy Nguyễn Minh Hà

File gửi kèm  La co nuoc Anh.pdf   356.99K   1274 Số lần tải




#552400 Định lý Đào

Đã gửi bởi Oai Thanh Dao on 08-04-2015 - 14:34 trong Tài liệu, chuyên đề, phương pháp về Hình học

Cho tam giác $ABC$, dựng ba tam giác cân đồng dạng cùng ra ngoài hoặc cùng vào trong $BA_0C, CB_0A, AC_0B $ với góc ở đáy là $\alpha$ . Cho các điểm $A_1,B_1,C_1, A_2B_2,C_2$ trên cách tia $AA_0,BB_0,CC_0 $ sao cho: 

 

$\frac{AA_1}{AA_0}=\frac{BB_1}{BB_0}=\frac{CC_1}{CC_0}=\frac{2}{3-tan(\alpha)}$ và

 

$\frac{AA_2}{AA_0}=\frac{BB_2}{BB_0}=\frac{CC_2}{CC_0}=\frac{2}{3+tan(\alpha)}$

 

Thì các tam giác $A_1B_1C_1$ và $A_2B_2C_2$ là các tam giác đều.

 

Mot ho tam giac Napoleon.png

 

Dao Thanh Oai, A family of Napoleon triangles associated with the Kiepert configuration, The Mathematical Gazette, Published online: 13 March 2015

 

http://journals.camb...d=0&issueId=544

 

File gửi kèm  TamgiaNapoleon.pdf   309.59K   479 Số lần tải