Đến nội dung


Hình ảnh

$x+y+z\leq \frac{3}{2}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 duaconcuachua98

duaconcuachua98

    Sĩ quan

  • Thành viên
  • 461 Bài viết
  • Giới tính:Nam
  • Đến từ:Stamford Bridge

Đã gửi 09-10-2014 - 15:39

Cho $a,b,c$ là ba cạnh tam giác.$x,y,z$ là nghiệm của hệ $\left\{\begin{matrix} cy+bz=a & \\ az+cx=b & \\ bx+ay=c & \end{matrix}\right.$

Chứng minh $x+y+z\leq \frac{3}{2}$


Bài viết đã được chỉnh sửa nội dung bởi duaconcuachua98: 09-10-2014 - 15:39


#2 hoctrocuaZel

hoctrocuaZel

    Thượng úy

  • Thành viên
  • 1162 Bài viết
  • Giới tính:Nam
  • Đến từ:Lớp lang tận cùng!
  • Sở thích::( :3

Đã gửi 09-10-2014 - 17:40

Cho $a,b,c$ là ba cạnh tam giác.$x,y,z$ là nghiệm của hệ $\left\{\begin{matrix} cy+bz=a & \\ az+cx=b & \\ bx+ay=c & \end{matrix}\right.$

Chứng minh $x+y+z\leq \frac{3}{2}$

Lời giải ( Hướng TH Phan) :D

PT(1), (2):

$\Leftrightarrow \begin{Bmatrix} acy+abz=a^2\\ abz+bcx=b^2 \end{Bmatrix}\rightarrow ay-bx=\frac{a^2-b^2}{c};ay+bx=c\Rightarrow \left\{\begin{matrix} y=\frac{a^2+c^2-b^2}{2ac}\\ x=\frac{b^2+c^2-a^2}{2bc}\\ y=\frac{a^2+b^2-c^2}{2ab} \end{matrix}\right.$

Khi đó: $x+y+z=\sum \frac{a^2+b^2-c^2}{2ab}\leq \frac{3}{2}$


Bài viết đã được chỉnh sửa nội dung bởi Huong TH Phan: 09-10-2014 - 20:44

Hướng TH Phan
$(1)$ Lòng như mây trắng
$(2)$: Forever Young
$(3)$: You are the apple of my eye
Người ta thường nói tuổi thanh xuân như một cơn mưa rào, nếu bị ướt một lần thì bạn vẫn mong muốn thêm 1 lần nữa ...
#hoctrocuaZel
:(

#3 Kool LL

Kool LL

    Sĩ quan

  • Thành viên
  • 370 Bài viết
  • Giới tính:Nam
  • Đến từ:Tp.HCM

Đã gửi 30-10-2014 - 00:36

Cho $a,b,c$ là ba cạnh tam giác.$x,y,z$ là nghiệm của hệ $\left\{\begin{matrix} cy+bz=a & \\ az+cx=b & \\ bx+ay=c & \end{matrix}\right.$

Chứng minh $x+y+z\leq \frac{3}{2}$

 

Giải hpt suy ra $x=\frac{b^2+c^2-a^2}{2bc}=\cos A$  ;  $y=\frac{c^2+a^2-b^2}{2ca}=\cos B$  ;  $z=\frac{a^2+b^2-c^2}{2ab}=\cos C$

Do đó : $T=x+y+z=\cos A+\cos B+\cos C$$=2.\cos\left(\frac{A+B}{2}\right).\cos\left(\frac{A-B}{2}\right)+1-2.\sin^2\left(\frac{C}{2}\right)$

$\le 2.\sin\left(\frac{C}{2}\right).1+1-2.\sin^2\left(\frac{C}{2}\right)$$=\frac{3}{2}-2.\left[\sin\left(\frac{C}{2}\right)-\frac{1}{2}\right]^2$$\le\frac{3}{2}$

 

-----------------------------------------------------------------------------------------------

 

$\boxed{\text{Cách 2}}$

$T=x+y+z=\sum_{x,y,z}\left(\frac{a^2+b^2-c^2}{2ab}+1\right)-3$$=\sum_{x,y,z}\frac{(a+b+c)(a+b-c)}{2ab}-3$$=\frac{(a+b+c)\left[2(ab+bc+ca)-(a^2+b^2+c^2)\right]}{2abc}-3$

$=\frac{p(4q-p^2)}{2r}-3$         với $p=a+b+c$ ; $q=ab+bc+ca$ ; $r=abc$

Theo BĐT Schur bậc $1$ thì ta có $p(4q-p^2)\le9r$

Suy ra $T\le\frac{9}{2}-3=\frac{3}{2}$.


Bài viết đã được chỉnh sửa nội dung bởi Kool LL: 30-10-2014 - 01:16





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh