Jump to content

Photo

Tìm GTNN của $A=\sum \frac{a^2b^2}{c^3(a^2+b^2)}$


  • Please log in to reply
5 replies to this topic

#1
yeudiendanlamlam

yeudiendanlamlam

    Trung sĩ

  • Thành viên
  • 143 posts

Cho $a,b,c>0$ thỏa mãn $a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2$. Tìm GTNN của $A=\frac{a^2b^2}{c^3(a^2+b^2)}+\frac{b^2c^2}{a^3(b^2+c^2)}+\frac{c^2a^2}{b^3(c^2+a^2)}$



#2
Thao Huyen

Thao Huyen

    Hạ sĩ

  • Thành viên
  • 93 posts

Cho $a,b,c>0$ thỏa mãn $a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2$. Tìm GTNN của $A=\frac{a^2b^2}{c^3(a^2+b^2)}+\frac{b^2c^2}{a^3(b^2+c^2)}+\frac{c^2a^2}{b^3(c^2+a^2)}$

$gt\Rightarrow \sum \frac{1}{a^2}\geqslant 1$

$\Rightarrow x^2+y^2+z^2\geqslant 1;A=LHS=\sum \frac{z^3}{x^2+y^2}$ (đặt: $1/a=x$)

Không mất tính tổng quát, giả sử: $x\geqslant y\geqslant z> 0\Rightarrow A\geqslant ^{Chebyshev}\frac{1}{3}.\sum x^3.\sum \frac{1}{y^2+z^2}$

Dùng $AM-GM$ nữa là xong :v


Cuộc sống giống như một cuốn sách. Một vài chương khá buồn, một số chương hạnh phúc và một số chương rất thú vị. Nhưng nếu bạn chưa bao giờ lật thử một trang bạn sẽ không bao giờ biết những gì ở chương tiếp theo!


#3
luukhaiuy

luukhaiuy

    Trung sĩ

  • Thành viên
  • 176 posts

ta có a2b2+b2c2+c2a2$\geq$$a^2b^2c^2$ do đó $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1$

đặt $\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z$ do đó$x^2+y^2+z^2=1$

và P=$\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{y^2+x^2}$=$\frac{x^4}{x(y^2+z^2)}+\frac{y^4}{y(z^2+x^2)}+\frac{z^4}{z(x^4+y^4)}$

ta có $x(y^2+z^2)=\frac{1}{\sqrt{2}}.\sqrt{2x^2}.\sqrt{y^2+z^2}.\sqrt{y^2+z^2}\leq \frac{1}{\sqrt{2}}.\sqrt{\frac{(2x^2+2y^2+2z^2)^3}{27}}\geq \frac{2}{\sqrt{27}}.\sqrt{(x^2+y^2+z^2)^3}$

chứng minh tương tự suy ra $x(y^2+z^2)+y(z^2+x^2)+z(x^2+y^2)\leq \frac{2}{\sqrt{3}}.\sqrt{(x^2+y^2+z^2)}$ nên P$\geq \frac{(x^2+y^2+z^2)^2}{\frac{2}{\sqrt{3}}.\sqrt{x^2+y^2+z^2}}\geq \frac{\sqrt{3}}{2}.\sqrt{(x^2+y^2+z^2)}\geq \frac{\sqrt{3}}{2}$


Edited by luukhaiuy, 20-07-2015 - 16:11.


#4
yeudiendanlamlam

yeudiendanlamlam

    Trung sĩ

  • Thành viên
  • 143 posts

ta có a2b2+b2c2+c2a2$\geq$$a^2b^2c^2$ do đó $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1$

đặt $\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z$ do đó$x^2+y^2+z^2=1$

và P=$\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{y^2+x^2}$=$\frac{x^4}{x(y^2+z^2)}+\frac{y^4}{y(z^2+x^2)}+\frac{z^4}{z(x^4+y^4)}$

ta có $x(y^2+z^2)=$$\frac{1}{\sqrt{2}}.\sqrt{2x^2}.\sqrt{y^2+z^2}.\sqrt{y^2+z^2}$$\leq \frac{1}{\sqrt{2}}.\sqrt{\frac{(2x^2+2y^2+2z^2)^3}{27}}\geq \frac{2}{\sqrt{27}}.\sqrt{(x^2+y^2+z^2)^3}$

chứng minh tương tự suy ra $x(y^2+z^2)+y(z^2+x^2)+z(x^2+y^2)\leq \frac{2}{\sqrt{3}}.\sqrt{(x^2+y^2+z^2)}$ nên P$\geq \frac{(x^2+y^2+z^2)^2}{\frac{2}{\sqrt{3}}.\sqrt{x^2+y^2+z^2}}\geq \frac{\sqrt{3}}{2}.\sqrt{(x^2+y^2+z^2)}\geq \frac{\sqrt{3}}{2}$

cho mình hỏi cách tách như trên có sử dụng phương pháp nào không hay dùng tư duy để tách vậy



#5
Phung Quang Minh

Phung Quang Minh

    Sĩ quan

  • Thành viên
  • 359 posts

ta có a2b2+b2c2+c2a2$\geq$$a^2b^2c^2$ do đó $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1$

đặt $\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z$ do đó$x^2+y^2+z^2=1$

và P=$\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{y^2+x^2}$=$\frac{x^4}{x(y^2+z^2)}+\frac{y^4}{y(z^2+x^2)}+\frac{z^4}{z(x^4+y^4)}$

ta có $x(y^2+z^2)=\frac{1}{\sqrt{2}}.\sqrt{2x^2}.\sqrt{y^2+z^2}.\sqrt{y^2+z^2}\leq \frac{1}{\sqrt{2}}.\sqrt{\frac{(2x^2+2y^2+2z^2)^3}{27}}\geq \frac{2}{\sqrt{27}}.\sqrt{(x^2+y^2+z^2)^3}$

chứng minh tương tự suy ra $x(y^2+z^2)+y(z^2+x^2)+z(x^2+y^2)\leq \frac{2}{\sqrt{3}}.\sqrt{(x^2+y^2+z^2)}$ nên P$\geq \frac{(x^2+y^2+z^2)^2}{\frac{2}{\sqrt{3}}.\sqrt{x^2+y^2+z^2}}\geq \frac{\sqrt{3}}{2}.\sqrt{(x^2+y^2+z^2)}\geq \frac{\sqrt{3}}{2}$

-Dòng thứ 4 của bạn viết ngược dấu rồi kìa, bạn sửa lại đi.



#6
guongmatkhongquen

guongmatkhongquen

    Trung sĩ

  • Thành viên
  • 137 posts

cho mình hỏi cách tách như trên có sử dụng phương pháp nào không hay dùng tư duy để tách vậy

Có lẽ là tư duy


Khoảnh khắc bạn đang thực sự sống chính là khoảnh khắc của hiện tại. Đó là thời điểm duy nhất mà bạn có quyền và có thể kiểm soát mọi thứ. “Ngày hôm qua đã là lịch sử, ngày mai vẫn còn là điều bí ẩn, chỉ có hôm nay mới là một món quà, đó là lý do vì sao chúng ta gọi hiện tại là quà tặng của cuộc sống”. Hãy bắt đầu bằng cách cảm nhận những điều tốt đẹp ngay vào lúc này, bạn sẽ có được những giây phút tươi sáng và tràn đầy niềm vui trong tương lai.
:oto:
  :oto:  :oto:  :oto:  :oto: PHẠM VĂN LẠC  :oto:  :oto:  :oto:  :oto:  :oto:  :oto: 





1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users