Đến nội dung

Hình ảnh

$\frac{a}{3a+b+c}+\frac{b}{a+3b+c}+\frac{c}{a+b+3c}\geq \frac{24abc}{5(a+b)(b+c)(c+a)}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1
dinhkhanhly

dinhkhanhly

    Binh nhất

  • Thành viên mới
  • 33 Bài viết

Cho a, b, c là các số thực dương. Chứng minh rằng:

$\frac{a}{3a+b+c}+\frac{b}{a+3b+c}+\frac{c}{a+b+3c}\geq \frac{24abc}{5(a+b)(b+c)(c+a)}$



#2
leanhthu

leanhthu

    Binh nhất

  • Thành viên mới
  • 24 Bài viết

BĐT $\Leftrightarrow \frac{1}{bc\cdot \left ( 3a+b+c \right )}+\frac{1}{ac\cdot \left ( a+3b+c \right )}+\frac{1}{ab\left ( a+b+3c \right )}\geq \frac{24}{5(a+b)\cdot \left ( b+c \right )\cdot \left ( c+a \right )}$

Áp dụng bất đẳng thức cauchy - schwartz, ta có:

$ \frac{1}{bc\cdot \left ( 3a+b+c \right )}+\frac{1}{ac\cdot \left ( a+3b+c \right )}+\frac{1}{ab\left ( a+b+3c \right )}\geqslant \frac{9}{(a+b)(b+c)(c+a)+7abc}$

ta có : $ \frac{9}{(a+b)(b+c)(c+a)+7abc}$$ \geq \frac{24}{5(a+b)(b+c)(c+a)}$$ \Leftrightarrow (a+b)(b+c)(c+a)\geq 8abc$

Dấu bằng <=> a=b=c






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh