Đến nội dung


Hình ảnh

JBMO TST 2


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Drago

Drago

    Sĩ quan

  • Thành viên
  • 462 Bài viết
  • Giới tính:Nam
  • Đến từ:$\star \int_{CQT}^{12T}\star$

Đã gửi 16-05-2017 - 13:10

18515924_1853223808259671_739810277_n.pn18554526_1853223841593001_1674713092_n.p18518572_1853223851593000_1190529567_n.p


Bài viết đã được chỉnh sửa nội dung bởi Drago: 16-05-2017 - 13:18

$\mathbb{VTL}$


#2 Drago

Drago

    Sĩ quan

  • Thành viên
  • 462 Bài viết
  • Giới tính:Nam
  • Đến từ:$\star \int_{CQT}^{12T}\star$

Đã gửi 16-05-2017 - 13:11

Level 2 - JBMO TST 2 - 2017

 

 

Bài 1. Cho đa thức $f(x)=x^{4}+ax^{3}+bx^{2}+cx$. Biết rằng mỗi phương trình $f(x)=1$ và $f(x)=2$ đều có 4 nghiệm thực (không nhất thiết phân biệt). Chứng minh rằng: nếu các nghiệm của phương trình đầu tiên thoả mãn đẳng thức $x_1+x_2=x_3+x_4$ thì đẳng thức này cũng đúng với các nghiệm của phương trình thứ hai.

 

 

Bài 2. Một số nguyên dương $k>1$ được gọi là số "đẹp" nếu với bất kỳ cặp số $(m,n)$ nguyên dương thoả mãn điều kiện $kn+m|km+n$ thì ta có $n|m$

 

       a) Chứng minh rằng: $5$ là một số " đẹp"

 

       b) Tìm tất cả các số "đẹp".

 

 

Bài 3. Cho đường tròn $(O)$, $BC$ là một dây cung của đường tròn $(O)$ sao cho $BC$ không là đường kính.

 

Cho điểm $A$ nằm trên cung lớn $BC$ của $(O)$, $E$ và $F$ tương ứng là hình chiếu vuông góc hạ từ $B$ và $C$ xuống các cạnh $AC$, $AB$.

 

       a) Chứng minh rằng: 2 tiếp tuyến của $(AEF)$ tại $E$ và $F$ giao nhau tại điểm cố định $M$ khi $A$ di chuyển trên cung lớn $BC$ của đường tròn $(O)$.

 

       b) Gọi $T$ là giao điểm của đoạn thẳng $EF$ và $BC$, $H$ là trực tâm của tam giác $ABC$.

 

Chứng minh rằng: $TH$ vuông góc với $AM$

 

 

Bài 4. Tìm số cách bạn có thể đặt số $1$ hoặc số $2$ trong mỗi ô của bàn cờ $8x$8 theo cách nào đó thoả mãn tổng các số trong mỗi cột và trong mỗi hàng là một số lẻ.

 

 

P/s: Đề mình  tự dich, có gì sai sót xin chỉ giáo. :)Mà mình dịch từ tiếng Arab Saudi sang đó. :v

 

(gửi kèm hình bài 3) 18518713_1853253838256668_1470223088_n.p


Bài viết đã được chỉnh sửa nội dung bởi Drago: 16-05-2017 - 13:51

$\mathbb{VTL}$


#3 Mr Cooper

Mr Cooper

    Sĩ quan

  • Thành viên
  • 496 Bài viết
  • Giới tính:Nam
  • Đến từ:Miền cắt trắng
  • Sở thích:$\mathbb{Geometry}$

Đã gửi 16-05-2017 - 13:21

Bài Hình câu b là $1$ hệ quả của định lý $\text{Brocard}$


Bài viết đã được chỉnh sửa nội dung bởi Mr Cooper: 16-05-2017 - 13:22


#4 Drago

Drago

    Sĩ quan

  • Thành viên
  • 462 Bài viết
  • Giới tính:Nam
  • Đến từ:$\star \int_{CQT}^{12T}\star$

Đã gửi 16-05-2017 - 13:25

Bài Hình câu b là $1$ hệ quả của định lý $\text{Brocard}$

Trình bày luôn @Mr.Cooper :), câu này dùng Trục đẳng phương cũng được.


Bài viết đã được chỉnh sửa nội dung bởi Drago: 16-05-2017 - 13:51

$\mathbb{VTL}$





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh