Đến nội dung


Hình ảnh

A,I,K thẳng hàng


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 UserNguyenHaiMinh

UserNguyenHaiMinh

    Binh nhất

  • Thành viên mới
  • 32 Bài viết
  • Giới tính:Nam

Đã gửi 15-01-2022 - 18:58

Cho tam giác ABC vuông tại A. Vẽ (I) nội tiếp và đường tròn (K) bàng tiếp trong góc A. Đường tròn (K) tiếp xúc AB,AC và BC thứ tự tại D,E,F. Gọi r và R là bán kính (I) và (K). Chứng minh rằng:

a, A,I,K thẳng hàng 

b,Sabc=R.r



#2 vkhoa

vkhoa

    Trung úy

  • Điều hành viên THPT
  • 901 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{DarkCyan}{\text{Đà Nẵng}}$
  • Sở thích:Toán học, đọc sách

Đã gửi 29-01-2022 - 11:08

a)$I, K$ cách đều $AB, AC$ nên $I, K$ thuộc phân giác $\widehat{BAC}$
$\Rightarrow A, I, K$ thẳng hàng
b)Đường tròn $(I)$ tiếp xúc $AB, AC, BC$ tại $M, N, P$
$S_{ABC} = S_{IAB} + S_{IAC} + S_{IBC}$
$= \frac12(AB.IM + AC.IN + BC.IP)$
$= \frac12.r.(c + b + a)$ (1)
$S_{ABC} = S_{KAB} + S_{KAC} - S_{KBC}$
$= \frac12(KD.AB + KE.AC - KF.BC)$
$= \frac12.R(c + b - a)$ (2)
Nhân (1) và (2) vế theo vế ta được
$S_{ABC}^2 = \frac14.r.R.((c + b)^2 - a^2)$
$=\frac14.r.R.(c^2 + b^2 + 2bc - a^2)$
$=\frac12.b.c.r.R = S_{ABC}.r.R$
$\Leftrightarrow S_{ABC} = r.R$(đpcm)

Bài viết đã được chỉnh sửa nội dung bởi vkhoa: 29-01-2022 - 11:08

(Hỏi cách giải bài toán vận tải suy biến?)
(Tam giác ABC cân tại A, lấy D trên cạnh BC, r1,r2 là bán kính nội tiếp ABD, ACD. Xác định vị trí D để tích r1.r2 lớn nhất )
(Nhấn nút "Thích" thay cho lời cám ơn, nút Thích nằm cuối mỗi bài viết, đăng nhập để nhìn thấy nút Thích)




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh