Jump to content

Photo

Giup em 1 bài toán

- - - - -

  • Please log in to reply
6 replies to this topic

#1
my_ha_123

my_ha_123

    Binh nhất

  • Thành viên
  • 34 posts
giai hệ phương trình:
$ \[\left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2yz = x} \\
{{y^2} + 2zx = y} \\
{{z^2} + 2xy = z} \\
\end{array}} \right.\] $

Edited by my_ha_123, 21-11-2010 - 13:45.


#2
khacduongpro_165

khacduongpro_165

    Thiếu úy

  • Thành viên
  • 594 posts
{${x^2} + 2yz = x$}
{{$y^2} + 2zx = y$}
{{$z^2} + 2xy = z$}
Đề thế ah?

Edited by khacduongpro_165, 21-11-2010 - 15:25.

"Phong độ là nhất thời, đẳng cấp là mãi mãi"!!!

#3
NguyThang khtn

NguyThang khtn

    Thượng úy

  • Hiệp sỹ
  • 1468 posts

{${x^2} + 2yz = x$}
{{$y^2} + 2zx = y$}
{{$z^2} + 2xy = z$}
Đề thế ah?

neu de la the thi :
cong tung ve cua ba PT lai ta duoc:
$(x+y+z)^2 = x+y+z$
den day de roi!

It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow

 


#4
my_ha_123

my_ha_123

    Binh nhất

  • Thành viên
  • 34 posts

neu de la the thi :
cong tung ve cua ba PT lai ta duoc:
$(x+y+z)^2 = x+y+z$
den day de roi!

em giai toi do lai khong giai duoc!giup em lam tiep voi

#5
NguyThang khtn

NguyThang khtn

    Thượng úy

  • Hiệp sỹ
  • 1468 posts
xet hai truong hop :
1)x+y+z= 0 roi thay vao phuong trinh da cho!
2) tuong tu!

It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow

 


#6
my_ha_123

my_ha_123

    Binh nhất

  • Thành viên
  • 34 posts

xet hai truong hop :
1)x+y+z= 0 roi thay vao phuong trinh da cho!
2) tuong tu!

thay sao anh?thay 1 truong hop jiup em voi

#7
dark templar

dark templar

    Kael-Invoker

  • Hiệp sỹ
  • 3788 posts
Bài này cũng dễ ,chỉ rắc rối ở chỗ xét nhiều trường hợp mà thôi!!!!!!
$\left\{ \begin{array}{l}x^2 + 2yz = x\left( 1 \right) \\ y^2 + 2zx = y\left( 2 \right) \\ z^2 + 2xy = z\left( 3 \right) \\ \end{array} \right. $
$\left( 1 \right) - \left( 2 \right) x^2 - y^2 + 2z\left( {y - x} \right) = x - y \Leftrightarrow \left( {x - y} \right)\left( {x + y - 2z - 1} \right) = 0 $
$\Leftrightarrow \left[ \begin{array}{l}x = y \\ x + y = 2z + 1 \\ \end{array} \right. $
$\bullet x = y:$
$\left( 1 \right) \Leftrightarrow x^2 + 2xz = x \Leftrightarrow \left[ \begin{array}{l}x = 0 \\ x + 2z = 1 \\ \end{array} \right.$
$x = y = 0:$
$\left( 3 \right) \Leftrightarrow z^2 = z \Leftrightarrow \left[ \begin{array}{l}z = 0 \\ z = 1 \\ \end{array} \right.$
$x + 2z = 1 \Leftrightarrow x = 1 - 2z $
$\left( 3 \right) \Leftrightarrow z^2 + 2\left( {1 - 2z} \right)^2 = z \Leftrightarrow 9z^2 - 9z + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{2}{3} \\ z = \dfrac{1}{3} \\ \end{array} \right. $
$\Rightarrow \left[ \begin{array}{l}x = y = \dfrac{{ - 1}}{3} \\ x = y = \dfrac{1}{3} \\ \end{array} \right.$
$\bullet x + y = 2z + 1 \Leftrightarrow 2z = x + y - 1 $
$\left( 1 \right) + \left( 2 \right) x^2 + y^2 + 2z\left( {x + y} \right) = x + y \Leftrightarrow 2\left( {x + y} \right)^2 - 2xy - 2\left( {x + y} \right) = 0 $
$\Leftrightarrow \left( {x + y} \right)^2 = xy + x + y\left( 4 \right) $
$\left( 3 \right) \Leftrightarrow \left( {\dfrac{{x + y - 1}}{2}} \right)^2 + 2xy = \dfrac{{x + y - 1}}{2} \Leftrightarrow x^2 + y^2 + 1 + 2xy - 2x - 2y + 8xy = 2\left( {x + y - 1} \right)$
$\Leftrightarrow \left( {x + y} \right)^2 - 4\left( {x + y} \right) + 8xy + 3 = 0\left( 5 \right) $
$\left( 4 \right),\left( 5 \right) \Rightarrow 9xy - 3\left( {x + y} \right) + 3 = 0 \Leftrightarrow 3xy + 1 = x + y $
$\Leftrightarrow xy = \dfrac{{x + y - 1}}{3} \Rightarrow \left( {x + y} \right)^2 = \dfrac{{4\left( {x + y} \right) - 1}}{3} $
$t = x + y \Rightarrow 3t^2 - 4t + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1 \\ t = \dfrac{1}{3} \\ \end{array} \right. \Rightarrow \left[ \begin{array}{l}z = 0 \\ z = \dfrac{{ - 1}}{3} \\ \end{array} \right.$
$\left( 3 \right) \Rightarrow \left[ \begin{array}{l}xy = 0 \\ xy = \dfrac{{ - 2}}{9} \\ \end{array} \right. $
$\left\{ \begin{array}{l}xy = 0 \\ x + y = 1 \\ \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l}x = 0 \\ y = 1 \\ \end{array} \right. \\ \left\{ \begin{array}{l}x = 1 \\ y = 0 \\\end{array} \right. \\ \end{array} \right. $
$\left\{ \begin{array}{l}xy = \dfrac{{ - 2}}{9} \\ x + y = \dfrac{1}{3} \\ \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \dfrac{2}{3} \\ y = \dfrac{{ - 1}}{3} \\ \end{array} \right. \\\left\{ \begin{array}{l}x = \dfrac{{ - 1}}{3} \\ y = \dfrac{2}{3} \\ \end{array} \right. \\ \end{array} \right. $
$\Rightarrow \left( {x,y,z} \right) = \left( {0,0,0} \right);\left( {0,0,1} \right);\left( {\dfrac{{ - 1}}{3},\dfrac{{ - 1}}{3},\dfrac{2}{3}} \right);\left( {\dfrac{1}{3},\dfrac{1}{3},\dfrac{1}{3}} \right);\left( {0,1,0} \right);\left( {1,0,0} \right);\left( {\dfrac{2}{3},\dfrac{{ - 1}}{3},\dfrac{{ - 1}}{3}} \right);\left( {\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 1}}{3}} \right) $

Edited by dark templar, 18-12-2010 - 21:57.

"Do you still... believe in me ?" Sarah Kerrigan asked Jim Raynor - Starcraft II:Heart Of The Swarm.




1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users