Đến nội dung

Hình ảnh

Russia Sharygin Geometry Olympiad 2012


  • Please log in to reply
Chủ đề này có 1 trả lời

#1
Crystal

Crystal

    ANGRY BIRDS

  • Hiệp sỹ
  • 5534 Bài viết

Russia Sharygin Geometry Olympiad 2012


Problem 1.

In triangle $ABC$ point $M$ is the midpoint of side $AB$, and point $D$ is the foot of altitude $CD$. Prove that $\angle A = 2\angle B$ if and only if $AC = 2 MD$.

Problem 2.


A cyclic $n$-gon is divided by non-intersecting (inside the $n$-gon) diagonals to $n-2$ triangles. Each of these triangles is similar to at least one of the remaining ones. For what $n$ this is possible?

Problem 3.


A circle with center $I$ touches sides $AB,BC,CA$ of triangle $ABC$ in points $C_{1},A_{1},B_{1}$. Lines $AI, CI, B_{1}I$ meet $A_{1}C_{1}$ in points $X, Y, Z$ respectively. Prove that $\angle Y B_{1}Z = \angle XB_{1}Z$.

Problem 4.


Given triangle $ABC$. Point $M$ is the midpoint of side $BC$, and point $P$ is the projection of $B$ to the perpendicular bisector of segment $AC$. Line $PM$ meets $AB$ in point $Q$. Prove that triangle $QPB$ is isosceles.

Problem 5.


On side $AC$ of triangle $ABC$ an arbitrary point is selected $D$. The tangent in $D$ to the circumcircle of triangle $BDC$ meets $AB$ in point $C_{1}$; point $A_{1}$ is defined similarly. Prove that $A_{1}C_{1}\parallel AC$.

Problem 6.


Point $C_{1}$ of hypothenuse $AC$ of a right-angled triangle $ABC$ is such that $BC = CC_{1}$. Point $C_{2}$ on cathetus $AB$ is such that $AC_{2} = AC_{1}$; point $A_{2}$ is defined similarly. Find angle $AMC$, where $M$ is the midpoint of $A_{2}C_{2}$.

Problem 7.


In a non-isosceles triangle $ABC$ the bisectors of angles $A$ and $B$ are inversely proportional to the respective sidelengths. Find angle $C$.

Problem 8.


Let $BM$ be the median of right-angled triangle $ABC (\angle B = 90^{\circ})$. The incircle of triangle $ABM$ touches sides $AB, AM$ in points $A_{1},A_{2}$; points $C_{1}, C_{2}$ are defined similarly. Prove that lines $A_{1}A_{2}$ and $C_{1}C_{2}$ meet on the bisector of angle $ABC$.

Problem 9.


In triangle $ABC$, given lines $l_{b}$ and $l_{c}$ containing the bisectors of angles $B$ and $C$, and the foot $L_{1}$ of the bisector of angle $A$. Restore triangle $ABC$.

Problem 10.


In a convex quadrilateral all sidelengths and all angles are pairwise different.
a) Can the greatest angle be adjacent to the greatest side and at the same time the smallest angle be adjacent to the smallest side?
b) Can the greatest angle be non-adjacent to the smallest side and at the same time the smallest angle be non-adjacent to the greatest side?

Problem 11.


Given triangle $ABC$ and point $P$. Points $A', B', C'$ are the projections of $P$ to $BC, CA, AB$. A line passing through $P$ and parallel to $AB$ meets the circumcircle of triangle $PA'B'$ for the second time in point $C_{1}$. Points $A_{1}, B_{1}$ are defined similarly. Prove that
a) lines $AA_{1}, BB_{1}, CC_{1}$ concur;
b) triangles $ABC$ and $A_{1}B_{1}C_{1}$ are similar.

Problem 12.


Let $O$ be the circumcenter of an acute-angled triangle $ABC$. A line passing through $O$ and parallel to $BC$ meets $AB$ and $AC$ in points $P$ and $Q$ respectively. The sum of distances from $O$ to $AB$ and $AC$ is equal to $OA$. Prove that $PB + QC = PQ$.

Problem 13.


Points $A, B$ are given. Find the locus of points $C$ such that $C$, the midpoints of
$AC, BC$ and the centroid of triangle $ABC$ are concyclic.

Problem 14.


In a convex quadrilateral $ABCD$ suppose $AC \cap BD = O$ and $M$ is the midpoint of $BC$. Let $MO \cap AD = E$. Prove that $\frac{AE}{ED} = \frac{S_{\triangle ABO}}{S_{\triangle CDO}}$.

Problem 15.


Given triangle $ABC$. Consider lines $l$ with the next property: the reflections of $l$ in the sidelines of the triangle concur. Prove that all these lines have a common point.

Problem 16.


Given right-angled triangle $ABC$ with hypothenuse $AB$. Let $M$ be the midpoint of $AB$ and $O$ be the center of circumcircle $\omega$ of triangle $CMB$. Line $AC$ meets $\omega$ for the second time in point $K$. Segment $KO$ meets the circumcircle of triangle $ABC$ in point $L$. Prove that segments $AL$ and $KM$ meet on the circumcircle of triangle $ACM$.

Problem 17.


A square $ABCD$ is inscribed into a circle. Point $M$ lies on arc $BC$, $AM$ meets $BD$ in point $P$, $DM$ meets $AC$ in point $Q$. Prove that the area of quadrilateral $APQD$ is equal to the half of the area of the square.

Problem 18.


A triangle and two points inside it are marked. It is known that one of the triangle’s angles is equal to $58^{\circ}$, one of two remaining angles is equal to $59^{\circ}$, one of two given points is the incenter of the triangle and the second one is its circumcenter. Using only the ruler without partitions determine where is each of the angles and where is each of the centers.

Problem 19.


Two circles with radii 1 meet in points $X, Y$, and the distance between these points also is equal to $1$. Point $C$ lies on the first circle, and lines $CA, CB$ are tangents to the second one. These tangents meet the first circle for the second time in points $B', A'$. Lines $AA'$ and $BB'$ meet in point $Z$. Find angle $XZY$.

Problem 20.


A circle $\omega$ with center $I$ is inscribed into a segment of the disk, formed by an arc and a chord $AB$. Point $M$ is the midpoint of this arc $AB$, and point $N$ is the midpoint of the complementary arc. The tangents from $N$ touch $\omega$ in points $C$ and $D$. The opposite sidelines $AC$ and $BD$ of quadrilateral $ABCD$ meet in point $X$, and the diagonals of $ABCD$ meet in point $Y$. Prove that points $X, Y, I$ and $M$ are collinear.

Problem 21.


Two perpendicular lines pass through the orthocenter of an acute-angled triangle. The sidelines of the triangle cut on each of these lines two segments: one lying inside the triangle and another one lying outside it. Prove that the product of two internal segments is equal to the product of two external segments.

Problem 22.


A circle $\omega$ with center $I$ is inscribed into a segment of the disk, formed by an arc and a chord $AB$. Point $M$ is the midpoint of this arc $AB$, and point $N$ is the midpoint of the complementary arc. The tangents from $N$ touch $\omega$ in points $C$ and $D$. The opposite sidelines $AC$ and $BD$ of quadrilateral $ABCD$ meet in point $X$, and the diagonals of $ABCD$ meet in point $Y$. Prove that points $X, Y, I$ and $M$ are collinear.

Problem 23.


An arbitrary point is selected on each of twelve diagonals of the faces of a cube.The centroid of these twelve points is determined. Find the locus of all these centroids.

Problem 24.


Given are $n$ $(n > 2)$ points on the plane such that no three of them are collinear. In how many ways this set of points can be divided into two non-empty subsets with non-intersecting convex envelops?

#2
tieulyly1995

tieulyly1995

    Sĩ quan

  • Thành viên
  • 435 Bài viết
Russia Sharygin Geometry Olympiad 2012

Bài 1 :

Trong $\Delta ABC$ gọi $M$ là trung điểm của $AB$ và $D$ là chân đường cao hạ từ $C$ xuống $AB$ CMR: $\angle A = 2\angle B \Leftrightarrow AC = 2 MD$.


Bài 3 :

Một đường tròn tâm $I$ tiếp xúc với các cạnh $AB,BC,CA$ của $\Delta ABC$ tại các điểm $C_{1},A_{1},B_{1}$. Đường thẳng $AI, CI, B_{1}I$ giao với đường thẳng $A_{1}C_{1}$ tương ứng tại các điểm $X, Y, Z$. CMR: $\angle Y B_{1}Z = \angle XB_{1}Z$.


Bài 4 :

Cho $\Delta ABC$. Gọi $M$ là trung điểm của $BC$ và $P$ là hình chiếu của $B$ tới đường trung trực của đoạn thẳng $AC$. Đường thẳng $PM$ giao với đường thẳng $AB$ tại $Q$. CMR: tam giác $QPB$ cân.


Bài 5 :

Trên cạnh $AC$ của tam giác $ABC$ lấy một điểm $D$ bất kì. Tiếp tuyến tại $D$ của đường tròn ngoại tiếp tam giác $BDC$ giao với đường thẳng $AB$ tại $C_{1}$; điểm $A_{1}$ được xác định tương tự. CMR : $A_{1}C_{1}\parallel AC$.


Bài 6 :

Cho tam giác vuông $ABC$. Trên cạnh huyền $AC$ lấy điểm $C_{1}$, trên cạnh $AB$ lấy điểm $C_{2}$ sao cho $BC = CC_{1}$, $AC_{2} = AC_{1}$. Điểm $A_{2}$ được xác định tương tự . Tính góc $AMC$ biết $M$ là trung điểm của cạnh $A_{2}C_{2}$.


Bài 7 :

Cho tam giác $ABC$ không cân. Các đường phân giác góc $A$ và góc $B$ tỉ lệ nghịch với độ dài tương ứng. Tính góc $C$.


Bài 8 :
Cho $BM$ là đường trung tuyến của tam giác vuông $ABC (\angle B = 90^{\circ})$. Đường tròn nội tiếp tam giác $ABM$ tiếp xúc với các cạnh $AB, AM$ tại các điểm $A_{1},A_{2}$. Điểm $C_{1}, C_{2}$ được xác định tương tự . CMR : các đường thẳng $A_{1}A_{2}$ và $C_{1}C_{2}$ và đường phân giác của góc $ABC$ đồng quy.

Bài 9 :

Trong tam giác $ABC$, đường thẳng $l_{b}$ và $l_{c}$ chứa các đường phân giác của các góc $B$ và góc $C$. Gọi $L_{1}$ là chân đường phân giác của góc $A$. Dựng tam giác $ABC$.

p/s : các bạn TNV vào dịch tiếp nhé @@






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh