Ta có: $(\sum \sqrt{\frac{a}{a^2+b+c}.\frac{a}{3}})^2\leq (\sum \frac{a}{a^2+b+c}).\frac{a+b+c}{3}$
Mặt khác: $\sum \frac{a}{a^2+b+c}=\sum \frac{a(1+b+c)}{(a^2+b+c)(1+b+c)}\leq \frac{a+b+c+2(ab+bc+ca)}{(a+b+c)^2}$
$3(a^2+b^2+c^2)\geq (a+b+c)^2<=>a+b+c \leq 3= a^2+b^2+c^2$
Do đó $\sum \frac{a}{a^2+b+c}\leq \frac{a^2+b^2+c^2+2(ab+bc+ca)}{(a+b+c)^2}=\frac{(a+b+c)^2}{(a+b+c)^2}= 1$
Suy ra $(\sum \sqrt{\frac{a}{a^2+b+c}.\frac{a}{3}})^2\leq \frac{a+b+c}{3}\leq 1$
<=>$\sum \sqrt{\frac{a^2}{3(a^2+b+c)}}\leq 1<=>\sum \sqrt{\frac{a^2}{a^2+b+c}}\leq \sqrt{3}$
Dấu "=" xảy ra <=> a=b=c=1