Đến nội dung


Hình ảnh

$f(x^{2}+y^{2}+2f(xy))=(f(x+y))^{2}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 halloffame

halloffame

    Thiếu úy

  • Điều hành viên OLYMPIC
  • 522 Bài viết
  • Giới tính:Nam
  • Đến từ:LQĐ
  • Sở thích:Hình học phẳng

Đã gửi 11-11-2015 - 21:06

Tìm tất cả các hàm $f:R \rightarrow R$ thỏa mãn:
$f(x^{2}+y^{2}+2f(xy))=(f(x+y))^{2}.$

Sự học như con thuyền ngược dòng nước, không tiến ắt phải lùi.


#2 Zz Isaac Newton Zz

Zz Isaac Newton Zz

    Sĩ quan

  • Điều hành viên OLYMPIC
  • 392 Bài viết
  • Giới tính:Nam
  • Đến từ:Khoa Toán đại học Khoa Học Tự Nhiên TP HCM
  • Sở thích:Đại Số

Đã gửi 05-09-2018 - 15:36

Tìm tất cả các hàm $f:R \rightarrow R$ thỏa mãn:
$f(x^{2}+y^{2}+2f(xy))=(f(x+y))^{2}.$

Ta viết lại đẳng thức dưới dạng: $f\left ( \left ( x+y \right )^{2}+2f(xy)-2xy \right )=f^{2}\left ( x+y \right ),\forall x,y\in \mathbb{R}$ (1)

Đặt: $x+y=a,xy=b$ và $g\left ( x \right )=2\left ( f(x)-x \right )$ khi đó (1) viết lại dưới dạng: 

$f\left ( a^{2}+g(b) \right )=f^{2}\left ( a \right )$ với mọi $b=xy\leq \frac{\left ( x+y \right )^{2}}{4}=\frac{a^{2}}{4}.$

Đặt: $M=\left \{ g(b)\mid b\in \mathbb{R} \right \}$ và $T=\left \{ g(b_{1})-g(b_{2})\mid b_{1},b_{2}\in \mathbb{R} \right \}$

Với mọi $x$ đủ lớn thì $f$ tuần hoàn theo chu kì $t\in T.$

Ta có: $g\left ( \left ( x^{2}+a_{1} \right )^{2}+a_{2} \right )-g\left ( \left ( x^{2}+a_{2} \right )^{2}+a_{2} \right )=2\left [ f\left ( \left ( x^{2}+a_{_{1}} \right )^{2}+a_{2} \right )-\left ( \left ( x^{2}+a_{1} \right )^{2}+a_{_{2}} \right ) \right ]-2\left [ f\left ( \left ( x^{2}+a_{2} \right )^{2}+a_{2} \right )-\left ( \left ( x^{2}+a_{2} \right )^{2}+a_{2} \right ) \right ]=2\left [ f^{4}(x)-f^{4}(x)+2(a_{2}-a_{_{1}})x^{2}+a_{2}^{2}-a_{1}^{2} \right ]=4(a_{2}-a_{1})x^{2}+2\left ( a_{2}^{2}-a_{1}^{2} \right )\in T$

Giả sử tồn tại hai số $a_{1},a_{2}$ sao cho $a_{1}< a_{2}.$ Suy ra trong $T$ chứa một đoạn liên tục trên $\mathbb{R}$ và với mọi số $x$ đủ lớn thì $f$ tuần hoàn theo chu kì bất kì trong đoạn này.

Từ đây ta có $f$ là hàm hằng với mọi $x\geq x_{1},$ hay $f(x)=c,\forall x\geq x_{1},c=const.$

Ta chọn một số $a$ đủ lớn để $a\geq x_{1},x^{2}+a\geq x_{1}$ thì ta suy ra: $c^{2}=c\Rightarrow c=\left \{ 0,1 \right \}.$ Tới đây ta đi xét hai trường hợp.

Trường hợp 1: nếu $c=0$ thì $f\left ( y^{2}+g(x) \right )=f^{2}(y)=f^{2}(-y),$ do đó với mọi $y\leq -x_{1}$ hoặc $y\geq x_{1}$ thì $f(y)=0.$

Suy ra: với mọi $y\leq -x_{1}$ thì $g(y)=-2y.$ Với mọi $x\in \mathbb{R}$ tồn tại $y\leq -x_{1}$ để $x^{2}-2y>x_{1}.$ Từ đó $f^{2}(x)=f(x^{2}-2y)=0\Rightarrow f(x)=0,\forall x\in \mathbb{R}.$

Trường hợp 2: nếu $c=1$ thì với mọi $y\leq -x_{1}$ ta có: $f(y)=\pm 1,g(y)=\pm 2-2y,$ suy ra: $\forall x\in \mathbb{R},\exists y\leq -x_{1}$ sao cho: $x^{2}\pm 2-2y>x_{1}$ và $f^{2}(x)=f\left ( x^{2}\pm 2-2y \right )=1\Rightarrow f(x)=\pm 1,\forall x\in \mathbb{R}.$

Trong trường hợp $f$ không đồng nhất với $1$ thì $\exists x_{0}:f(x_{0})=-1.$

Suy ra: $x_{0}\neq x^{2}+g(y),y\leq \frac{x^{2}}{4}.$

Xét $y\leq 0,x\in \mathbb{R}$ thì $x_{0}< g(y),\forall y\leq 0.$

Mặt khác $g(0)\leq 2$ nên $x_{0}<2.$ Suy ra: $f(x)=1,\forall x\geq 2$ và $g(x)=2-2x,\forall x\geq 2.$

*Giả sử $x_{0}\geq 0$ khi đó $g(x_{0})=-2-2x_{0}$ và với mọi $x_{0}\leq \frac{a^{2}}{4}$ thì $f(a^{2}-2-2x_{0})=f^{2}(a)\geq 0\Rightarrow f(m)=1,\forall m\geq 2x_{0}-2$

Từ đây ta suy ra: $2x_{0}-2>x_{0}\Leftrightarrow x_{0}>2,$ mâu thuẫn nên do đó ta phải có: $x_{0}<0.$

*Với $g(x_{_{0}})=-2-2x_{_{0}}$ và $f(a^{2}-2-2x_{0})=f^{2}(a)\geq 0,$ suy ra: $f(m)=1,\forall m\geq -2-2x_{0}\Rightarrow -2-2x_{0}> x_{0}\Leftrightarrow x_{0}<\frac{-2}{3}.$ Do đó: $f(x)=1,\forall x\geq \frac{-2}{3}.$ Ta sẽ chứng minh rằng $x^{2}+g(y),$ với $x^{2}\geq 4y$ sẽ không thể nhận giá trị bé hơn $\frac{-2}{3}.$

*Nếu $y< \frac{-2}{3}$ thì $g(y)=\pm 2-2y$ và $x^{2}+g(y)\geq -2-2y\geq \frac{-2}{3}.$

*Nếu $y\geq \frac{-2}{3}$ thì $g(y)=2-2y$ thì có hai khả năng:

+ Nếu $y\leq 0$ thì $x^{2}+g(y)=x^{2}+2-2y>0.$

+ Nếu $y>0$ thì $x^{2}+g(y)\geq 4y+2-2y=2+2y>0.$

Từ đây ta có kết luận về họ hàm thỏa mãn đề bài là: $f(x)=\left\{\begin{matrix} 1 & \forall x\geq \frac{-2}{3} & \\ -1 & \forall x< \frac{-2}{3} & \end{matrix}\right.$

Vậy tất cả các hàm $f$ thỏa đề bài là: $f(x)=0,\forall x\in \mathbb{R},$ $f(x)=1,\forall x\in \mathbb{R},$ $f(x)=x,\forall x\in \mathbb{R},$ $f(x)=\left\{\begin{matrix} 1 & \forall x\geq \frac{-2}{3} & \\ -1 & \forall x< \frac{-2}{3} & \end{matrix}\right.$


Bài viết đã được chỉnh sửa nội dung bởi Zz Isaac Newton Zz: 06-09-2018 - 19:35


#3 chanhquocnghiem

chanhquocnghiem

    Đại úy

  • Thành viên
  • 1960 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 06-09-2018 - 07:32

Tìm tất cả các hàm $f:R \rightarrow R$ thỏa mãn:
$f(x^{2}+y^{2}+2f(xy))=(f(x+y))^{2}.$

Đặt $a=x+y$ ; $b=xy$ ; $g(x)=2\left ( f(x)-x \right )$. Khi đó từ giả thiết, ta có thể viết :

$f\left ( a^2+g(b) \right )=\left ( f(a) \right )^2,\forall b\leqslant \frac{a^2}{4}$ $(\star )$

Xét $2$ trường hợp :

1) $g(x)$ là một hàm hằng : $g(x)=2\left ( f(x)-x \right )=2K\Leftrightarrow f(x)=x+K$ ($K$ là hằng số)

    Thay vào $(\star )$, ta có :

    $a^2+2K+K=(a+K)^2\Leftrightarrow K=0$

    Vậy ta tìm được hàm $f(x)=x$ thỏa mãn điều kiện đề bài.

2) $g(x)$ không phải là hàm hằng :

    Ta có các kết quả như bạn Zz Isaac Newton Zz tìm được ở trên.

 

Kết luận : Các hàm số thỏa mãn điều kiện đề bài là :

a) $f_1(x)=x,\forall x\in\mathbb{R}$

b) $f_2(x)=0,\forall x\in\mathbb{R}$

c) $f_3(x)=1,\forall x\in\mathbb{R}$

d) $f_4(x)=\left\{\begin{matrix}1,\forall x\geqslant -\frac{2}{3}\\-1,\forall x< -\frac{2}{3} \end{matrix}\right.$


Bài viết đã được chỉnh sửa nội dung bởi chanhquocnghiem: 06-09-2018 - 07:37

...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh