Đến nội dung


bangbang1412

Đăng ký: 18-02-2013
Offline Đăng nhập: Riêng tư
****-

Bài viết của tôi gửi

Trong chủ đề: Tìm một hàm số liên tục $f(x)$ sao cho trên mặt phẳng tọa độ Ox...

31-05-2021 - 18:36

Trên mặt phẳng tọa độ Oxy ta gọi một điểm là điểm vô tỉ nếu điểm đó có tọa độ cả x và y đều là số vô tỷ và tương tự một điểm gọi là điểm hữu tỉ nếu cả tọa độ x và y của điểm đó đều là số hữu tỉ. Một điểm gọi là điểm  bán hữu tỉ nếu  tọa độ x  điểm đó là số hữu tỉ và  tọa độ y là số vô tỷ. Tương tự một điểm gọi là điểm bán vô tỷ  nếu tọa độ x của điểm đó là số vô tỷ và tọa độ y của điểm đó  là số hữu tỉ

a) Tìm một hàm số liên tục $f(x)$ sao cho trên mặt phẳng tọa độ Oxy hàm số này chỉ đi qua những điểm vô tỷ ( nếu được hãy tìm tất cả các hàm liên tục như thế).

b) Tìm một hàm số liên tục $f(x)$ sao cho trên mặt phẳng tọa độ Oxy hàm số này chỉ đi qua những điểm hữu tỷ ( nếu được hãy tìm tất cả các hàm liên tục như thế).

c) Tìm một hàm số liên tục $f(x)$ sao cho trên mặt phẳng tọa độ Oxy hàm số này chỉ đi qua những điểm  bán hữu tỷ ( nếu được hãy tìm tất cả các hàm liên tục như thế).

Mình không hiểu bạn hỏi gì, ví dụ thế nào là một hàm chỉ đi qua những điểm vô tỷ? Theo định nghĩa của bạn một điểm $(x,y)$ là vô tỷ nếu $x,y$ đều vô tỷ nhưng một điểm $(x,f(x))$ hoàn toàn có thể lấy $x$ vô tỷ hoặc hữu tỷ, như vậy thì bạn vô tình thừa nhận tập xác định hàm $f$ của bạn là vô tỷ hoặc hữu tỷ.

 

Đó là một điểm, còn nữa, bạn thâm chí chẳng ghi ra tập nguồn và tập đích của $f$.

 

Nếu bạn sửa rằng tìm một hàm $f$ mà $f(x)$ nhận giá trị hữu tỷ/vô tỷ với mọi $x$ thì nghe còn hợp lý, khi đó bài toán này được giải nếu bạn đã học tính liên thông, i.e. hàm liên tục biến tập liên thông thành liên thông và liên thông trong $\mathbb{R}$ chỉ là khoảng hoặc nửa khoảng.

 

Mình nghĩ bạn nên học cách trình bày trước khi đặt câu hỏi.


Trong chủ đề: Giới thiệu về lý thuyết đơn hình

27-05-2021 - 19:31

Lý thuyết đồng luân trong phạm trù vật đơn hình

 

Định nghĩa. Một vật đơn hình trong một phạm trù $\mathscr{C}$ là một hàm tử $X: \Delta^{op} \to \mathscr{C}$. Phạm trù $s\mathscr{C}=\mathscr{C}^{\Delta^{op}}=\mathrm{Fun}(\Delta^{op},\mathscr{C})$ có vật là các vật đơn hình và cấu xạ là các biến đối tự nhiên giữa chúng. Hơn nữa ta viết, $X_n = X([n]), d_i = X(d^i)$ là \textit{mặt} và $s_j = X(s^j)$ là suy biến của $X$. Nếu $\alpha$ là một cấu xạ trong $\Delta$, ta viết $X(\alpha) = X_{\alpha}$.

 

Ví dụ. Một tập đơn hình trong phạm trù tập hợp $\mathbf{Sets}$ được gọi là một tập đơn hình, một trong các tập đơn hình thú vị nhất là $\Delta^n= \mathrm{Hom}_{\Delta}(\square,[n]): \Delta^{op} \to \mathbf{Sets}$ - ta gọi đây là đơn hình chuẩn $n$-chiều. Theo bổ đề Yoneda ta có
\begin{equation}
    X_n = X([n]) \cong \mathrm{Hom}(\mathrm{Hom}(\square,[n]),X).
\end{equation}
Phép nhúng Yoneda
\begin{equation}
    \begin{split}
        \Delta &\hookrightarrow \mathbf{Sets}^{\Delta^{op}} \\
        [n] & \mapsto \Delta^n
    \end{split}
\end{equation}
là trung thành, đầy đủ, hơn nữa nó còn \textit{trù mật} theo nghĩa nếu $\mathscr{C}$ là một phạm trù có đối giới hạn với tập chỉ số bất kỳ thì mọi hàm tử $u:\Delta \to \mathscr{C}$ đều có thể nâng lên thành một hàm tử $u_{!}:\mathbf{Sets}^{\Delta^{op}} \to \mathscr{C}$. Nói cách khác, ta có một biểu đồ giao hoán


File gửi kèm  3.png   1.86K   1 Số lần tải

Cụ thể với mỗi $X \in \mathrm{Obj}(\mathbf{Sets}^{\Delta^{op}})$ thì theo ta biết $X \cong \underset{\Delta^n \to X}{\mathrm{colim}} \ \Delta^n$ (chứng minh sau!) nên ta có thể định nghĩa
\begin{equation}
    u_{!}(X) = \underset{\Delta^n \to X}{\mathrm{colim}} \ u([n]).
\end{equation}
Ngược lại ta cũng có một hàm tử $u^{\star}: \mathscr{C} \to \mathbf{Sets}^{\Delta^{op}}$ là liên hợp của $u_{!}$ định nghĩa bởi
\begin{equation}
    (u^{\star}(C))_n = \mathrm{Hom}_{\mathscr{C}}(u([n]),C) \ \forall \ C \in \mathrm{Obj}(\mathscr{C}).
\end{equation}

Về sau ta sẽ thấy cặp liên hợp $(\mathrm{Sing}(\square),\left | \square \right|)$ là một hệ quả của ý tưởng vừa phân tích.

 

Bổ đề. Với mọi vật đơn hình $X$ thì các đẳng thức sau, gọi là các đẳng thức đơn hình, thỏa mãn

\begin{matrix}
      d_i d_j = d_{j-1} d_i & i < j\\
       d_i s_j= s_{j-1}d_i &  i < j\\
       d_j s_j = \mathrm{id} = d_{j+1}s_j & \\
       d_i s_j =  s_j d_{i-1} & i > j+1 \\
       s_i s_j = s_{j+1}s_i & i \leq j
\end{matrix}

 

Chứng minh. Hệ quả hiển nhiên của các đẳng thức đối đơn hình.


Trong chủ đề: Giới thiệu về lý thuyết đơn hình

27-05-2021 - 19:19

Phạm trù số

 

Định nghĩa. $\Delta$ là phạm trù mà các vật là các tập sắp thứ tự toàn phần $[n] = (0 \leq 1 \leq ... \leq n)$, các cấu xạ là các ánh xạ bảo toàn thứ tự $\alpha: [m] \to [n]$, điều này có nghĩa $\alpha(i) \leq \alpha(j)$ nếu $i \leq j$.  Một đơn cấu (tương ứng, toàn cấu) trong $\Delta$ được định là ánh xạ bảo toàn thứ tự và là đơn ánh trên tập hợp (tương ứng, toàn ánh).

 

Định nghĩa. Đối mặt là các cấu xạ $d^i: [n-1] \to [n]$, $0 \leq i \leq n$ cho bởi
\begin{equation}
    d^i(k) = \begin{cases}
        k, & k < i\\
        k+1, & k \geq i+1
    \end{cases}
\end{equation}
Về ý nghĩa, các cấu xạ $d^i$ là các đơn cấu duy nhất $[n-1] \to [n]$, nó khuyết phần tử $i \in [n]$. Các cấu xạ $s^i: [n+1] \to [n], 0 \leq i \leq n$ cho bởi
\begin{equation}
    s^i(k) = \begin{cases}
        k, & k < i \\
        k-1, & k \geq i+1
    \end{cases}
\end{equation}
là các toàn cấu duy nhất $[n+1] \to [n]$, chúng được gọi là các đối suy biến. $s^i$ lặp phần tử $i \in [n]$ hai lần.

 

Định lý. Mọi cấu xạ $\alpha: [m] \to [n]$ có thể viết thành hợp một số đối mặt và một số đối suy biến.

 

Chứng minh. Ta chứng minh bằng quy nạp theo $n$. Nếu $n=0$ thì $\alpha$ hoặc là ánh xạ đồng nhất hoặc là hợp một số đối mặt. Giả sử khẳng định đúng tới $n$ và $\alpha: [n+1] \to [m]$ là một cấu xạ. Nếu $\alpha$ là đơn cấu thì $\alpha$ là hợp một số đối mặt. Nếu $\alpha$ không là đơn cấu thì tồn tại $k \in [n+1]$ mà $\alpha(k) = \alpha(k+1)$ (lưu ý điều này không xảy ra với một ánh xạ tổng quát mà chỉ đúng khi $\alpha$ bảo toàn thứ tự). Xét cấu xạ $\alpha':[n] \to [m]$ xác định bởi $\alpha'(i) = \alpha(i)$ nếu $i \leq k$ và $\alpha'(i) = \alpha(i+1)$ nếu $i>k$. Khi đó $\alpha = \alpha' s^k$ và ta thu được điều phải chứng minh khi áp dụng giả thiết quy nạp cho $\alpha'$.

 

Từ định lý trên ta thấy chỉ nên hạn chế sự tập trung xuống các đối mặt và các đối suy biến. Cụ thể, ta có một loạt các đẳng thức liên hệ trong định lý dưới đây.

 

Bổ đề. Trong phạm trù số các đẳng thức sau, gọi là các đẳng thức đối đơn hình, thỏa mãn

\begin{matrix}
       d^j d^i = d^i d^{j - 1}  & i < j \\
       s^j d^i = d^i s^{j-1}  &  i < j\\
       s^j d^j = \mathrm{id} = s^j d^{j+1} & \\
       s^j d^i = d^{i-1} s^j & i > j+1 \\
       s^j s^i = s^i s^{j+1} & i \leq j \\
\end{matrix}

Chứng minh. Ta chỉ chứng minh đẳng thức đầu tiên, tất cả các đẳng thức còn lại chứng minh tương tự. Lấy $i < j$ và $k \in [n]$. Ta có
\begin{equation}
    d^j d^i(k) = d^j\left(\begin{cases} k, & k < i \\ k + 1, & k \geq i \end{cases} \right) =
    \begin{cases}
        k, & k < i\\
        k+1,& i \leq k, k+1 < j \\
        k+2, &j \leq k+1
    \end{cases}
\end{equation}

\begin{equation}
    d^i d^{j-1}(k) = d^i\left(\begin{cases} k, & k < j -1 \\ k+ 1, & k \geq j-1 \end{cases} \right) = \begin{cases}
        k, & k < i \\
        k+1, & i \leq k, k+1 < j \\
        k+2, & j \leq k+1
    \end{cases}
\end{equation}
Do đó $d^j d^i = d^i d^{j-1}$ nếu $i < j$.

 

Định lý (phân tích đơn-toàn cấu). Với mọi ánh xạ bảo toàn thứ tự $\varphi: [n] \to [m]$, tồn tại và duy nhất một phân tích $\varphi = \mu \sigma$ trong đó $\mu, \sigma$ lần lượt là các toàn cấu, đơn cấu bảo toàn thứ tự.

 

Chứng minh. Trước tiên ta chứng minh sự tồn tại, gọi $i_s <...<i_1$ là các phần tử của $[m]$ không nằm trong ảnh của $\varphi$ và $j_1 < ... <j_t$ là các phần tử của $[n]$ mà $\alpha(j) = \alpha(j+1)$. Nếu $p = n-t = m-s$ thì ta có một phân tích
\begin{equation}
    [n] \overset{\sigma}{\twoheadrightarrow} [p] \overset{\mu}{\hookrightarrow} [m]
\end{equation}
trong đó $\mu=d^{i_1}...d^{i_s}$ và $\sigma = s^{j_1}...s^{j_t}$. Để minh hoạ cho chứng minh, ta xét một cấu xạ $[4] \to [5]$ được cho bởi hình sau


File gửi kèm  1.png   4.16K   1 Số lần tải

Như vậy tập ảnh của cấu xạ này là $(0<1<4)$, ta nhúng $(0<1<2)$ vào $[5]$ bởi $0\mapsto 0, 1 \mapsto 1, 2 \mapsto 4$ sẽ thu được phân tích  


File gửi kèm  2.png   5.04K   1 Số lần tải

Dễ thấy $[4] \twoheadrightarrow [2]$ và $[2] \hookrightarrow [5]$.

Bây giờ ta chứng minh tính duy nhất, lấy hai đơn cấu $\mu_i:[k_1] \to [m]$ và hai toàn cấu $\sigma:[n] \to [k_i]$ ($i = 1,2$) thỏa mãn $\varphi = \mu_1\sigma_1 = \mu_2\sigma_2$. Đếm số lượng phần tử của ảnh $\mathrm{Im}(\mu_i \sigma_i)$ ta suy ra $k_1=k_2$ và do $\mu_1,\mu_2$ là các đơn cấu với cùng tập ảnh ta suy ra $\mu_1=\mu_2=\mu$, điều này cũng suy ra $\sigma_1=\sigma_2$ do $\mu$ là đơn cấu.


Trong chủ đề: Chứng minh mọi $R-modun$ $M$ đều có một phép xạ ảnh

26-05-2021 - 23:31

Cho $M$ là một $R-modun$. Ta gọi một phép giải xạ ảnh của $M$ là một dãy khớp các đồng cấu $R-modun$

$...\rightarrow C_{n+1}\rightarrow C_{n}\rightarrow ...\rightarrow C_{0}\rightarrow M\rightarrow 0$

trong đó $C_{i}$ là $R-modun$ xạ ảnh, $\forall i\geq 0$. Chứng minh rằng mọi $R-modun$ $M$ đều có một phép xạ ảnh.

Chứng minh điều này khá dễ, nó chỉ là kĩ thuật chẻ dãy khớp dài thành dãy khớp ngắn nhưng trước khi chứng minh mình sẽ góp vài góc nhìn mà mình nghĩ có thể ai đó sẽ thấy có ích

  • Giải xạ ảnh thì người ta thường kí hiệu bởi $P_{\bullet}$ hơn là $C_{\bullet}$ do chữ xạ ảnh trong tiếng anh là projective, ta thường viết gọn là $P_{\bullet} \twoheadrightarrow M$.
  • Khi viết $P_{\bullet} \twoheadrightarrow M$ ta có thể hiểu là một dãy khớp dài, với vị trí bậc $(-1)$ là $M$. Tuy nhiên nếu ta xét phạm trù $\mathbf{Ch}_{\geq 0}(\mathrm{Mod}_R)$ với vật là các phức $C_{\bullet}$ mà $C_{k}=0 \ \forall k < 0$ và cấu xạ là các đồng luân dây chuyền thì ta có thể đồng nhất $M$ với phức $M_{\bullet}$ mà $M_0 = M, M_{n}=  0 \ \forall n \neq 0$. Như vậy thực chất một giải xạ ảnh (projective resolution) của $M$ là một đồng luân dây chuyền $f: P_{\bullet} \to M$ đồng thời là một tựa đẳng cấu (quasi-isomorphism), tức, nó cảm sinh đẳng cấu trên đồng điều.

Về chứng minh, ta chọn một module $F_0$ tự do và một toàn cấu $F_0 \to M \to 0$ sau đó bạn làm tương tự sẽ có một module $F_1$ tự do và một toàn cấu $F_1 \to \mathrm{Ker}(F_0 \to M) \to 0$. Tại sao chọn được? Ví dụ $F_0 \to M \to 0$ ta chọn một hệ sinh $\left \{m_i \mid i \in I \right \}$ của $M$ và xét một module tự do $\bigoplus_{i \in I} Rr_i$ với một cơ sở $\left \{r_i \mid i \in I \right \}$, khi đó đồng cấu $r_i \mapsto m_i$ định nghĩa trên từng phần tử của cơ sở sẽ xác định duy nhất một đồng cấu $R$-tuyến tính $\bigoplus_{i \in I}Rr_i \to M \to 0$.

 

Ghép hai dãy này ta có $F_1 \to F_0 \to M \to 0$ khớp, điều này hiển nhiên từ xây dựng, ta tiếp tục quá trình này sẽ thu được dãy thỏa mãn. Cuối cùng, bạn thấy mọi module tự do thì đều xạ ảnh nên ta có đpcm.


Trong chủ đề: Lịch sử của giả thuyết Weil - J. A. Dieudonné

28-04-2021 - 15:18

VI. Đối đồng điều etale và định lý Deligne

 

Sử dụng kết quả cho các đường cong của mình, Weil đã chứng minh được giả thuyết của mình với các siêu mặt thỏa mãn công thức Kunneth cũng như một số ta tạp Grassman. Nhưng tại thời điểm đó không có một lý thuyết đối đồng điều nào đủ "tốt" có thể được định nghĩa. Khoảng năm $1953$, Cartan và Serre đã dùng đối đồng điều Leray với hệ số là các bó như một công cụ cực kỳ hữu hiệu để nghiên cứu các đa tạp phức và Serre đã chỉ ra làm cách nào để chuyển các kĩ thuật này sang thế giới của các đa tạp đại số trên một trường đóng đại số với đặc số $p$. Nhưng khi $p>0$, những nhóm đối đồng điều được định nghĩa không thỏa mãn công thức Lefschetz $(13)$, trong đó vế trái là một số nguyên, mà không phải một phần tử của một trường có đặc số $p$. Chỉ sau khi Grothendieck xây dựng lý thuyết lược đồ từ một ý tưởng của Serre thì ông đã có thể mở rộng ý tưởng ban đầu theo cả hai hướng "tôpô" và "bó", cho ứng mỗi đa tạp (hoặc lược đồ) $X$ một đại số đối đồng điều $H^{\bullet}(X_{et},\mathbb{Q}_l)$ trên trường l-adic $\mathbb{Q}_l$, trong đó $l$ là một số nguyên tố khác với đặc số của trường ban đầu (các trường $l$-adic đã được khám phá bởi Weil và Deuring).

 

Độ sâu sắc và phức tạp của các kỹ thuật liên quan trong định nghĩa của "đối đồng điều etale" $H^{\bullet}(X_{et})$ như là để loại trừ mọi khả năng trong việc đưa ra bất kỳ một chi tiết nào nữa trong định nghĩa của nó. Hãy để chúng tôi chỉ ra Grothendieck (với sự giúp đỡ của M. Artin (con trai của E. Artin) và J. L. Verdier) đã có thể chứng minh các tính chất (A), (B), (C) và gần đây Deligne đã chứng minh (D) đúng với mọi đa tạp trên một trường hữu hạn $\mathbb{F}_q$; tuy nhiên không một tính chất nào tương tự như (E) đã được chứng minh cho đối đồng điều etale (hoặc bất kỳ một lý thuyết đối đồng điều nào được đưa ra gần đây). Các tính chất (A), (B), (C) là đủ để chứng minh $(15)$, cũng như phương trình hàm

$$(16) \ \ \ Z_V(1/q^d u) = \pm q^{n\chi/2} u^{\chi}Z_V(u)$$

trong đó

$$(17) \ \ \ \chi = \sum_{i=0}^{2d} (-1)^i \mathrm{dim} H^i(X_{et},\mathbb{Q}_l).$$

Tuy nhiên, gần đây người ta mới biết rằng các hệ số của $P_j$ trong $(15)$ là độc lập với số nguyên tố $l$. Điều này được chứng minh bởi Deligne năm $1973$ cùng với phần khó nhất của giả thuyết Weil là $\left|\alpha_{ij}\right|=q^{1/2}$.

 

Một lần nữa ta nhắc lại rằng không thể mô tả một cách tuyệt đối khéo léo các chứng minh, điều này hơi khác với chứng minh của Hasse và Weil, do nó không thể dựa trên một lập luận "positivity". Ta hạn chế bài toán xuống trường hợp $i=d$ $(H^d(X))$ để chứng minh rằng $\left|\alpha_{dj}\right|=q^{d/2}$ tương đương với

$$(18) \ \ \ q^{(d-1)/2} \leq \left|\alpha_{dj}\right| \leq q^{(d+1)/2}$$

lý do là nếu ta áp dụng kết quả này với $X^k$ và sử dụng công thức Kunneth sẽ thu được

$$q^{(kd-1)/2} \leq \left|\alpha_{dj}^k \right| \leq q^{(kd+1)/2}$$

sau đó cho $k$ tới $+\infty$ và thu được điều phải chứng minh. Thậm chí trong $(18)$ ta có thể giả sử là $d$ chẵn và sau đó có thể chứng minh bằng quy nạp; đây là một bước sâu sắc và khó trong chứng minh, dựa trên kĩ thuật cũ "monodromy" của Picard và Lefschetz: kĩ thuật này hoàn toàn mang tính tôpô trong trường hợp cổ điển, nhưng nó đã được cải tiến bởi Grothendieck và những người cùng trường phái sang đối đồng điều etale.

 

Như mọi khi, trong toán học, sự đột phá này mở ra một con đường trong việc khai phá các vấn đề mới; nhưng chừng nào bài toán ban đầu của Gauss còn được quan tâm, nó là điểm cuối của vấn đề, vì định lý của Deligne suy ra rằng, số các điểm bậc $1$ của một siêu mặt xạ ảnh không suy biến $d$ chiều thỏa mãn đánh giá

$$\left| N - (1 + q+...+q^d )\right| \leq bq^{d/2}$$

trong đó hằng số chẵn $b$ có thể tính cụ thể: nó là số Betti thứ $d$ của các siêu mặt trên $\mathbb{C}$ có cùng bậc với $V$.

 

Nguồn: E. Freitag, R. Kiehl, Etale Cohomology and the Weil Conjectures.

Người dịch: Phạm Khoa Bằng aka bangbang1412, sinh viên năm $4$ đại học Khoa học Tự Nhiên Hà Nội.