Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


bangbang1412

Đăng ký: 18-02-2013
Offline Đăng nhập: Hôm nay, 02:02
****-

Chủ đề của tôi gửi

Toán học như văn hóa và tri thức

27-10-2022 - 22:28

Toán học như văn hóa và tri thức - Mathematics as Culture and Knowledge

 

Toán học là một hoạt động tri thức, được cho là một trong những hoạt động tinh tế nhất từng được tạo ra bởi văn minh nhân loại. Hermann Hesse phác họa chân dung những hoạt động của các nhà toán học một cách ẩn dụ trong Glass Bead Game. Có lẽ đó là nỗ lực văn học tốt nhất để bắt dù chỉ một cái nhìn thoáng qua những hoạt động nội tại trong xã hội toán học. Người ta không phê phán một tác phẩm hư cấu bằng sự thiếu chính xác của nó, nhưng sẽ thực sự khó để nói cái gì đó có nghĩa về việc thế nào là làm toán.

Có khá nhiều các nhà toán học thừa hưởng quan điểm kiểu Plato về toán học. Điều này có nghĩa là họ có niềm tin rằng các đối tượng và xây dựng toán học có một kiểu tồn tại nào đó trong "thế giới của những ý tưởng", tồn tại độc lập với trí óc con người. Như trong trường hợp của thiên đường thần thoại, những người khởi xướng niềm tin đó tỏ ra khá mập mờ về vị trí và tính nhất quán của thế giới Plato ngoại lai này. Một lý do thường được viện ra để củng cố góc nhìn Plato là sự hiệu quả của toán học trong việc mô hình hóa thế giới vật lý. Không nghi ngờ gì những định luật Kepler cuối cùng cũng có thể được quan sát và thông hiểu bởi bất kì trí thông minh công nghệ nào sống trên một hình tinh bao quanh bởi lực hấp dẫn để quay quanh một ngôi sao (nhưng liệu một khám phá như vậy có tuân theo tiến trình mà chúng ta biết, hành tinh có xoay quanh hai ngôi sao không?). Tuy nhiên người ta khó có thể viện ra một trường hợp mạnh mẽ như thế để mà củng cố ý tưởng về cái đẹp trong các nhánh toán học khác trừu tượng hơn rất nhiều.

Nếu không ai có thể nghi ngờ rằng bất kỳ trí thông minh ngoài trái đất nào được tiến hóa đủ sẽ hiểu được khái niệm về số nguyên tố, thì sẽ có bằng chứng kém thuyết phục hơn nhiều rằng chúng sẽ có những khái niệm giống chúng ta về các phạm trù dẫn suất (derived categories) hoặc shtukas (chú thích: Drinfeld mô-đun suy rộng). Những năm gần đây chúng ta đã phải dùng đến những loại toán học tinh vi hơn và hơn nữa, chúng được đưa vào vì sự phát triển ngày càng phức tạp của vật lý năng lượng cao. Mặc cho kiểu viện dẫn này, tôi vẫn cực kì hoài nghi về giả thuyết của chủ nghĩa Plato.

Bộ não chúng ta đã phát triển qua hàng triệu năm tiến hóa có chọn lọc. Năng lực chế tạo toán học có một lợi ích tiến hóa rõ ràng vì nó là chìa khóa cho một nền văn minh khoa học và công nghệ. Địa vị nổi bật mà loài vượn này đã chiếm được, trong so sánh với các loài động vật khác trên trái đất, hiển nhiên là bằng chứng về lợi ích tiến hóa của khả năng não bộ phục vụ cho các hoạt động khoa học.

Các kiểu não bộ khác mà là sản phẩm của một quá trình tiến hóa hoàn toàn khác biệt trong một môi trường hoàn toàn khác biệt cũng có thể đạt được cùng một kết quả trong tiến bộ công nghệ trong khi sáng tạo ra một kiểu toán học có khác biệt đáng kể với thứ toán học mà chúng ta biết. Không hoàn toàn khác, chắc chắn (các số nguyện tố), nhưng là một sự khác biệt đối xứng to lớn. Sự tồn tại của trí thông minh ngoài trái đất hoàn toàn mang tính giả thuyết. Sagan và Shklovskii đã suy đoán rất hay về nó trong những năm 70 và tôi sẽ để tất cả ở đó, chủ nghĩa Plato và những thứ đó.

Nếu toán học (ít nhất là một phần lớn toán học) chẳng phải một dấu hiệu của thiên đường chủ nghĩa Plato mà chỉ là một đơn thuần là sản phẩm của não bộ và quá trình tiến hóa thì nó cũng chẳng mất đi tý vẻ đẹp nào. Nó còn trở nên thú vị hơn vì nó là một phần của văn hóa con người, và nó đi cùng và chịu ảnh hưởng của sự phát triển của toàn bộ những gì còn lại của văn minh.

Toán học mà chúng ta biết ngày nay là kết quả của một hành trình phát triển văn hóa dài và quanh co. Tuy nhiên, nó còn lâu mới là một tòa lâu đài bất động. Sự liên tục của nó, sự tiến hóa mau chóng có thể nhìn thấy dễ dàng bằng cách nhìn vào một số thống kê quan trọng. MathSciNet, nguồn review chính của các công trình toán học, liệt kê ra tổng cộng 2,245,194 công trình, và tăng thêm 60,000 mỗi năm (và những gì liệt kê bởi MathSciNet chỉ là một tuyển chọn trên tổng số những công trình toán học).

Bước quan trọng cho bất cứ ai hứng thú trong việc làm toán là ý thức về sự to lớn trong địa hạt này. Một rủi ro chính, theo ý tôi, trong toán học và bất kì lĩnh vực nào của tri thức con người, là trở nên ngây thơ. Người ta không tự nhận mình là nhà toán học. Trở thành một nhà toán học đòi hỏi ít nhất mười năm tu tập chuyên sâu và học hành cẩn thận. Cái đó mới chỉ là để tích lũy một lượng tối thiểu kiến thức và kĩ năng cần thiết để hiểu làm toán là như thế nào. Để bắt đầu thực sự làm cái gì đó trong toán học đòi hỏi một vài bước sau đó nữa.

Một thứ cực kì khó để tiếp thu, và là một dấu hiệu tốt để trở thành một nhà toán học trưởng thành chuyên nghiệp là khả năng đánh hơi ra cái gì thú vị. Có rất nhiều thứ trong toán học mà người ra có thể làm chỉ để làm, Marcel Duchamp đã đặt tên cho một tác phẩm điêu khắc đầy khiêu khích của ông ta "phân loại lược theo số lượng răng".

Thứ toán học thực sự thú vị không phải là một bài tập phân loại lược. Cái thường làm một kết quả toán học bất ngờ và thú vị nằm trong khả năng khám phá ra những kết nối không ngờ tới: một cách liên hệ kết quả và xây dựng mà ban đầu tỏ ra chẳng liên quan, nhận ra sự tương tự trong cấu trúc thông qua những hiện tượng khác biệt rõ ràng.

Ngây thơ trong toán học (với những ngoại lệ hiếm hoi) có một tác động đơn thuần là cắm đầu vào một góc tù mù của một trò chơi vô ích. Kiến thức là những gì cung cấp những ngọn hải đăng và hải đồ quan trọng cho phép các nhà toán học đang hoạt động định hướng đường đi của họ một cách an toàn trong khi băng qua vùng biển động.

Có những huyền thoại lãng mạn được lan truyền rộng rãi kiểu như những thiên tài cô đơn chẳng đọc điếc gì mà vẫn xổ ra được những định lý đẹp đẽ. Những huyền thoại này phần lớn dựa trên các giai thoại bịa đặt. Thực tế, một thời gian dài đọc và hấp thu tri thức toán học của quá khứ và hiện tại là tối hậu trong việc tạo ra thứ toán học thú vị trong tương lai. Cô lập chỉ đơn giản là cạn kiệt khả năng sáng tạo.

Ngoài sự hiệu quả của nó như một chất xúc tác cho sáng chế, việc truyền tải kiến thức thông qua chữ viết là thứ tạo nên con người chúng ta. Nó là chìa khóa cho tiến bộ của văn minh. Chúng ta đọc và học bởi vì chúng ta tìm thấy niềm vui khi làm thế, vì chúng ta là những tồn tại người quan tâm tới tồn tại không chỉ như mảnh vụn cô lập mà là một phần của nhân loại như một thể thống nhất. Như trong thơ nổi tiếng của John Donne, "không có người nào là một hòn đảo riêng, chỉ mình nó với nó; mọi con người là một mẩu của lục địa, một phần của cái chính yếu."

Toán học là thú vị với tự cách một mức độ cực rất cao giữa những thành tựu của nhân loại, bởi vì nó có tính phổ quát có thể cho chúng ta cách bắc cầu và vượt qua những khác biệt không đáng kể về địa lý và lịch sử đã chia rẽ loài người. Nó là ngôn ngữ chung mà bộ não chúng ta đã tạo ra, thứ ngôn ngữ chèo lái tiến bộ khoa học và công nghệ và đồng thời là một nỗ lực nghệ thuật có tính triết lý sâu sắc.

 

File gửi kèm  Screenshot 2022-10-27 at 22-20-29 The Unravelers Mathematical Snapshots - Jean-Francois Dars - The Unravelers_ Mathematical Snapshots-AK Peters (2008).pdf.png   382.9K   5 Số lần tải

 

Thật sự, có một khía cạnh đặc biệt của toán học làm nó tách biệt với những lĩnh vực tri thức khác của con người. Nó hoạt động đồng thời dưới tư cách của một khoa học chính xác và cũng dưới tư cách một nghệ thuật. Trí tưởng tượng bay bổng, hình ảnh thơ mộng và trực quan cùng những cân nhắc thẩm mỹ thúc đẩy sự phát triển của toán học và sống kề cạnh với những quy luật nghiêm ngặt nhất của khoa học.

Thật đáng thương khi các nhà khoa học thần kinh cố gắng hiểu làm thế nào não bộ phát triển toán học nói chung, họ thường tỏ ra nhầm lẫn toán học với "cảm giác số" (tạm dịch từ number sense). Cái thứ hai là một khoa tri thức rất khác biệt, vốn hoàn toàn tách rời khỏi toán học (có hằng tá ví dụ về những nhà toán học nổi tiếng mà chẳng tý cảm giác số nào). Toán học có nghĩa là tạo ra các cấu trúc và nói riêng, những con số tỏ ra là một cấu trúc thú vị, nhưng nhưng điều đó là khá xa khi kết nối với toán học nói chung.

Cố gắng hiểu toán học được tạo ra trong não bộ như thế nào sẽ là một cách tuyệt vời để khám phá ra nhiều hơn nữa những chức năng của não bộ tự nó, vì nó cung cấp một phổ các cách thức vận hành của sự sáng tạo và tưởng tượng cũng như sự vận dụng hình ảnh và kí hiệu, với một sự chú tâm được xác định rõ ràng và chính xác.

Câu trả lời cuối cùng, nếu ai đó cần, cho câu hỏi là tại sao chúng ta làm toán, là do chúng ta tìm thấy niềm vui khi làm vậy. Nó là một phụ phẩm của tiến hóa bằng chọn lọc tự nhiên mà chúng ta chiết xuất ra sự vui thú từ việc làm những thứ có lợi cho sự sinh tồn của bộ gene chúng ta. Toán học có lợi cho giống loài chúng ta bởi vì những ứng dụng nó mang đến cho khoa học và công nghệ, nhưng đó không phải lý do chúng ta làm toán. Chúng ta không nghĩ về sự quan trọng của nó trong ứng dụng thực tiễn khi chúng ta thích thú sáng tạo những thứ toán học mới, cũng như chúng ta không nghĩ về tầm quan trọng của việc trộn lẫn DNA khi làm tình.

 


                                                                                                                                                  Tác giả: Matilde Marcolli, Max-Planck-Institut für Mathematik, Bonn.

                                                                                                                                                                                Dịch: Phạm Khoa Bằng, Université de Rennes 1.


K-lý thuyết Milnor

01-09-2022 - 14:33

Trong topic này mình muốn giới thiệu về K-lý thuyết Milnor (Milnor's K-theory) và kết nối nó với một số lý thuyết đối đồng điều như đối đồng điều Galois, nhóm Bloch-Chow, đối đồng điều motivic. Về mặt lịch sử, ban đầu K-lý thuyết đại số (algebraic K-theory) chỉ định nghĩa được cho $K_0,K_1,K_2$ (Grothendieck định nghĩa $K_0$) và các tính toán trên các nhóm này đã rất phức tạp rồi, về sau K-lý thuyết đại số chỉ được định nghĩa và nghiên cứu một cách có hệ thống từ sau Quillen khi ông đưa lý thuyết đồng luân vào các context khác của toán học. Trước đó một định lý của Matsumoto cho ta mô tả $K_2$ cụ thể dưới dạng phần tử sinh và quan hệ, Milnor dựa trên định nghĩa này đưa ra một định nghĩa ad-hoc cho một K-lý thuyết khác, gọi là K-lý thuyết Milnor, nó chứa một phần thông tin của K-lý thuyết đại số (theo nghĩa Quillen + cổ điển) theo nghĩa sau khi tensor với $\mathbb{Q}$ nó được nhúng vào $K$-lý thuyết đại số.

 

Để thuận tiện cho người đọc, mình sẽ định nghĩa lại một số nhóm cổ điển $K_0,K_1,K_2$ và một số tính chất cơ bản (không chứng minh).

 

Nhóm K_0

 

Cố định một vành $R$ (giao hoán có đơn vị). Nhắc lại rằng một module xạ ảnh là một hạng tử trực tiếp của một module tự do nào đó.

 

Định nghĩa. Nhóm $K_0(R)$ được định nghĩa bởi công thức sau

$$K_0(R) = \bigoplus \mathbb{Z}[P]/\sim,$$

trong đó tổng trực tiếp lấy trên lớp đẳng cấu các $R$-module xạ ảnh hữu hạn sinh, quan hệ $\sim$ được cho bởi $[P] + [Q] = [P \oplus Q]$. Ta cũng có thể trang bị cho $K_0(R)$ một cấu trúc vành bởi tích tensor $[P][Q] = [P \otimes Q]$, điều này có được do tích tensor của hai module xạ ảnh hữu hạn sinh cũng là một module xạ ảnh hữu hạn sinh. Như vậy thực chất $K_0(R)$ là một vành.

 

Lưu ý rằng xây dựng $K_0$ có tính hàm tử, tức là nếu $f: R \longrightarrow R'$ là một đồng cấu vành thì ta có một đồng cấu vành tự nhiên $f_*:K_0(R) \longrightarrow K_0(R')$ cho bởi phép đổi cơ sở $[P] \longmapsto [R' \otimes_R P]$. Như vậy nói chung mọi vành $R$ ta có một đồng cấu $K_0(\mathbb{Z}) \longrightarrow K_0(R)$ do $\mathbb{Z}$ là vật đầu trong phạm trù vành giao hoán.

Ví dụ.

  • Khi $R=k$ là một trường thì mọi module hữu hạn sinh là một không gian vector hữu hạn chiều, xác định chính xác tới một đẳng cấu bằng số chiều. Như vậy ánh xạ $K_0(k) \longrightarrow \mathbb{R}, V \longmapsto \dim_k(V)$ là một đẳng cấu.
  • Khi $R$ là một vành địa phương thì định lý của Kaplansky nói rằng mọi module xạ ảnh hữu hạn sinh trên $R$ là tự do, chứng minh $K_0(R) \simeq \mathbb{Z}$.

Giờ giả sử $R$ được nhúng vào một trường $k$ (luôn làm được ví dụ khi $R$ nguyên, $k=\mathrm{Frac}(R)$ trường các thương của $R$) thì ta có một phân tích

$$K_0(R) \simeq \mathbb{Z} \oplus \mathrm{Ker}(K_0(R) \longrightarrow \mathbb{Z})$$

do $K_0(R) \longrightarrow K_0(k)$ có một chẻ chính là đồng cấu $K_0(\mathbb{Z}) \longrightarrow K_0(R)$. Hạng tử $\mathrm{Ker}(K_0(R) \longrightarrow \mathbb{Z})$ được kí hiệu bởi $\widetilde{K_0}(R)$ và gọi là nhóm $K_0$ rút gọn của $R$.

 

Một lớp vành khác mà ta có thể tính nhóm $K_0$ là các miền Dedekind (miền Noether, đóng nguyên, chiều Krull một).

 

Mệnh đề. Cho $R$ là một miền Dedekind, khi đó $K_0(R) \simeq \mathbb{Z} \oplus \widetilde{K_0}(R)$ trong đó $\widetilde{K_0}(R)$ đẳng cấu với nhóm lớp ideal của $R$. Hơn nữa, tích hai phần tử bất kì trong nhóm rút gọn bằng không.
 

Nhóm Whitehead $K_1$

 

Cố định vành giao hoán có đơn vị $R$. Kí hiệu $GL(n,R)$ bởi nhóm tuyến tính tổng quát cỡ $n$ trên $R$. Nhóm $GL(n,R)$ được nhúng vào nhóm $GL(n+1,R)$ bởi

$$A \longmapsto \begin{pmatrix}
A & 0 \\
 0 &1
\end{pmatrix}$$

Định nghĩa nhóm tuyến tính tổng quát $GL(R)$ là giới hạn (hay hợp thành) trực tiếp của dãy $(GL(n,R))_{n \geq 0}$. Nhóm $GL(R)$ có một tính chất rất đặc biệt, đó là nhóm con $E(R)$ sinh bởi các ma trận cơ bản (elementary matrices) chính là nhóm giao hoán tử của $GL(R)$, do đó là một nhóm con chuẩn tắc.

 

Định nghĩa. Nhóm Whitehead $K_1(R)$ được định nghĩa là abel hoá $GL(R)^{ab} = GL(R)/E(R)$ của nhóm tuyến tính vô hạn.

 

Lưu ý rằng nhóm tuyến tính và phép abel hoá đều có tính hàm tử nên $K_1(-)$ có tính hàm tử.

 

Nhóm Steinberg và hàm tử $K_2$

 

Cố định một vành giao hoán có đơn vị $R$. Kí hiệu $GL(n,R)$ bởi nhóm tuyến tính tổng quát cỡ $n$ trên $R$. Với $1 \leq i,j \leq n, \lambda \in R$ ta có các ma trận sơ cấp $E^{\lambda}_{i,j}=\mathbb{1}+A^{\lambda}_{i,j}$  trong đó $A^{\lambda}_{i,j}$ có tất cả vị trí bằng $0$ ngoại trừ vị trí $(i,j)$ là $\lambda$. Có thể dễ chứng minh các đẳng thức dưới đây

$$E^{\lambda}_{i,j}E^{\mu}_{i,j} = E^{\lambda+\mu}_{i,j}, \ \ [E_{i,j}^{\lambda},E^{\mu}_{k,l}] = \begin{cases} 1 & j \neq k, i \neq l, \\ E^{\lambda \mu}_{i,l} & j = k, i\neq l, \\ E^{-\mu\lambda}_{k,j} & j\neq k, i = l. \end{cases}$$

Trong đó $[a,b]=aba^{-1}b^{-1}$ là giao hoán tử.

 

Định nghĩa. Với $n \geq 3$, nhóm Steinberg $St(n,R)$ được định nghĩa là nhóm tự do trên các kí hiệu $X^{\lambda}_{i,j}$ với $\lambda \in R, 1 \leq i,j \leq n$ chia thương cho quan hệ

$$X^{\lambda}_{i,j}X^{\mu}_{i,j} = X^{\lambda+\mu}_{i,j}, \ \ [X_{i,j}^{\lambda},X^{\mu}_{k,l}] = \begin{cases} 1 & j \neq k, i \neq l, \\ X^{\lambda \mu}_{i,l} & j = k, i\neq l, \\ X^{-\mu\lambda}_{k,j} & j\neq k, i = l. \end{cases}$$

Nhắc lại từ phép nhúng $GL(n,R) \longrightarrow GL(n+1,R)$ ta có phép nhúng tương ứng $St(n,R) \longrightarrow St(n+1,R)$ và do đó lấy giới hạn cho ta nhóm Steinberg vô hạn và một đồng cấu $St(R) \longrightarrow GL(R)$ thoả mãn ảnh của đồng cấu này chính là nhóm $E(R)$ các giao hoán tử của $GL(R)$.

 

Định nghĩa. Nhóm $K_2(R)$ được định nghĩa là $\mathrm{Ker}(St(R) \longrightarrow GL(R))$. Như vậy dễ thấy $K_2(-)$ có tính hàm tử.

 

Một định lý không tầm thường nói rằng là hạt nhân của $St(R)$. Như vậy $K_2(R)$ là nhóm abel và ta có một dãy khớp

$$1 \longrightarrow K_2(R) \longrightarrow St(R) \longrightarrow GL(R) \longrightarrow K_1(R) \longrightarrow 1.$$

 

(còn tiếp)


Ghi chú về đối đồng điều động lực

26-08-2022 - 22:24

Gửi mọi người một self-study note của mình về đối đồng điều động lực (motivic cohomology) phát triển bởi Voevodsky. Đối đồng điều động lực được dự đoán tồn tại bởi Beillinson, cụ thể, ông dự đoán tồn tại một phức $\mathbb{Z}(n)$ sao cho hypercohomology trên Zariski site này cho ta một đối đồng điều $H^{*,n}(X,\mathbb{Z})=\mathbb{H}_{Zar}^*(X,\mathbb{Z}(n))$ mà khi hạn chế tại một số bậc đặc biệt ta thu được K-lý thuyết Milnor, nhóm Bloch-Chow bậc cao và đồng thời có một dãy phổ hội tụ về K-lý thuyết Quillen sao cho sau khi tensor với $\mathbb{Q}$ dãy phổ này suy biến về $\gamma$-lọc của K-lý thuyết Quillen. Nổi tiếng hơn, giả thuyết Bloch-Kato-Milnor dự đoán tồn tại một đẳng cấu $K^M_*(F)/l \simeq H^*_{et}(F,\mu_l^{\otimes *})$ trong đó $F$ là một trường, $l$ nguyên tố sao cho $1/l \in F$ được Voevodsky chứng minh tương đương với giả thuyết Beillinson-Lichtembaum $H^{p,q}(X,\mathbb{Z}/l) \simeq H^p_{et}(X,\mu_l^{\otimes q})$. Voevodsky sau đó đã được huy chương Fields vì chứng minh trọn vẹn giả thuyết Bloch-Kato bằng cách xây dựng một lớp đa tạp dựa trên công trình của Rost. Với mình đây là thành công đầu tiên hướng tới lý thuyết motive của Grothendieck vì giả thuyết Bloch-Kato đã kết nối hai loại bất biến: transcendental (nhóm Chow) và arithmetic (đối đồng điều etale).

 

Đối đồng điều động lực tới nay có rất nhiều cách xây dựng, có thể kể đến:

  1. Như hypercohomology trên Zarikis hoặc Nisnevich site.
  2. Như nhóm Bloch-Chow bậc cao.
  3. Như hom-set trong phạm trù motive hình học $\mathbf{DM}_{gm}$ hoặc phạm trù motive hình học effective $\mathbf{DM}^{eff}_{gm}$ (phạm trù này là một ứng viên khá tốt cho phạm trù mixed motives dự đoán bởi Grothendieck nhưng rất tiếc chỉ bằng một ví dụ đơn giản Voevodsky chứng minh nó không có $t$-structure nào theo nghĩa của Deligne.
  4. Biểu diễn trong phạm trù đồng luân ổn định motivic (không trong note) bằng vật biểu diễn là phổ Eilenberg-MacLane motivic.

Trong note của mình mình chọn hai cách $1$ và $3$, mình không chứng minh chúng agree với nhau mà chọn từng hình thức luận sao cho tiện việc tính toán và đi thẳng vào những chỗ cần đi. Tất cả các định nghĩa trên đều đồng nhất khi ta xét trên phạm trù các đa tạp trơn trên một trường. Trong trường hợp đặc số $0$ trường có giải kì dị ta có thể chỉ xét $k$-đa tạp (không nhất triết hơn) mà vẫn có đối đồng điều motivic.

 

Mọi người có thể thảo luận thêm về đối đồng điều động lực tại chủ đề này luôn.


Motivic integration: an introduction

13-04-2022 - 18:10

In this topic, I introduce the notion of the so-called motivic integration, which is an upgrade version of the old version, namely, the p-adic integration. The word motivic literally means the values of this integration is essentially geometric. It was introduced by M. Kontsevich in his lecture in Orsay in 1995 to solve a theorem of Bartyrev stating that two birational Calabi-Yau varieties have the same Betti numbers.

 

Let $S$ be a scheme. By a $S$-algebraic variety, we mean a $S$-scheme of finite presentation. We denote by $\mathrm{Var}_S$ the isomorphism classes of finite presentation $S$-schemes. When $S = \mathrm{Spec}(k)$ with $k$ a field, we simply write $\mathrm{Var}_k$ instead of $\mathrm{Var}_{\mathrm{Spec}(k)}$.

 

Jet scheme and arc space

 

Let $X$ be a $k$-variety.

 

Proposition 1. For $m \in \mathbb{N}$, there exists an algebraic $k$-variety $J_m(X)$ such that:
\begin{equation*}
    \mathrm{Hom}_k(Z \times \mathrm{Spec}(k[t]/(t^{m+1})), X) \simeq \mathrm{Hom}_k(Z,J_m(X))
\end{equation*} for any $k$-scheme $Z$.

 

Proof. It is sufficient to deal with the case $X, Z$ are affine, i.e., $X = \mathrm{Spec}(R)$ and $Z = \mathrm{Spec}(A)$ for some $k$-algebra $R$ and some finitely generated $k$-algebra $R = k[x_1,...,x_n]/(f_1,...,f_r)$.
\begin{equation*}
    \mathrm{Hom}_k(\mathrm{Spec}(A) \times_k \mathrm{Spec}(k[t]/(t^{m+1})), \mathrm{Spec}(R))  \simeq \mathrm{Hom}_k(\mathrm{Spec}(A \otimes k[t]/(t^{m+1})), \mathrm{Spec}(R))
\end{equation*} which is nothing but $\left \{\varphi: k[x_1,...,x_n] \longrightarrow A[t]/(t^{m+1}) \mid \varphi(f_i) = 0 \ \forall \ i = \overline{1,r} \right \}$. For such a $\varphi$, set:
\begin{equation*}
    \varphi(x_i) = a_i^0 + a_i^1 t + \cdots + a_i^m t^m \ \forall \ i =\overline{1,n}
\end{equation*} and,
\begin{equation*}
    \varphi(f_i) = F^0_i(a^u_v) + F^1_i(a^u_v)t + \cdots + F^m_i(a^u_v) t^m
\end{equation*} where $u = \overline{0,m}, v = \overline{1,n}$ and $F^t_i$'s are polynomials in $a^{u}_v$. Consequently, we see that $\varphi(f_i)=0$ if and only if all $F^t_i(a^u_v) = 0$; and hence
\begin{align*}
    \left \{\varphi: k[x_1,...,x_n] \longrightarrow A[t]/(t^{m+1}) \mid \varphi(f_i) = 0 \ \forall \ i = \overline{1,r} \right \} &  = \mathrm{Hom}(k[x_j,x^0_j,...,x^m_j]_{j=\overline{1,n}}/(F_i^l(x^u_j)), A) \\
    & = \mathrm{Hom}(\mathrm{Spec}(A),\mathrm{Spec}(R_m))
\end{align*}
where $R_m = k[x_j,x^0_j,...,x^m_j]_{j=\overline{1,n}}/(F_i^l(x^u_j))$; and finally we can define $J_m(X) = \mathrm{Spec}(R_m)$.

 

Definition 2. For $m \geq n$, the natural surjections:
\begin{equation*}
       k[t]/(t^{m+1}) \twoheadrightarrow k[t]/(t^{n+1}) \twoheadrightarrow  k
\end{equation*} induced transition morphisms $\pi_{m,n}: J_m(X) \longrightarrow J_n(X)$, make $(J_m(X), \pi_{m,n})$ a projective system. Define $J_{\infty}(X) = \underset{m \longrightarrow \infty}{\lim} J_m(X)$ and denote by $\pi_m$ the $m^{th}$-canonical projection $\pi_m:J_m(X) \longrightarrow J(X)$.

 

Remark. It is not trivial that the limit $\underset{m \longrightarrow \infty}{\lim} J_m(X)$ exists in the category of schemes. We must prove that the transition morphisms $\pi_{m,n}$'s are affine.

 

Proposition 3. For any $k$-scheme $Z$, we have:
\begin{equation*}
    \mathrm{Hom}_k(Z \hat{\times_k}  \mathrm{Spec}(k[[t]]), X) \simeq \mathrm{Hom}_k(Z,J_{\infty}(X))
\end{equation*} where $Z \hat{\times} \mathrm{Spec}(k[[t]])$ means the formal completion of $Z \hat{\times}  \mathrm{Spec}(k[[t]])$ along the subscheme $Z \times_k \left \{0 \right \}$.

 

Definition 4. For $m \in \mathbb{N}$, the scheme $J_m(X)$ is called the $m^th$ jet scheme of $X$ and $J_{\infty}(X)$ is called the arc space of $X$. For any $k$-scheme $Z$, elements in $\mathrm{Hom}_k(Z,J_m(X))$ are called $Z$-valued $m$-jets of $X$ and elements in $\mathrm{Hom}_k(Z,J_{\infty}(X))$ are called $Z$-valued arcs of $X$. If $Z = \mathrm{Spec}(k)$, we just say $m$-jets or arcs.

 

Example 5. Let $X = V(x^3 + y^2) \subset \mathbb{A}^2_k$. View $x,y$ as formal power series in $t$ and consider the equation:
    \begin{equation*}
        (a_0+a_1t+\cdots)^3 + (b_0+b_1t+\cdots)^2 = 0.
    \end{equation*} By truncating the above equation at degree $m+1$, it gives us the defining equations of $J_m(X)$. For instance, $J_0(X)$ is given by $a_0^3+b_0^2=0$; $J_1(X)$ is given by $a_0^3+b_0^2=0$ and $3a_0^2 a_1 + 2b_0 b_1=0$.

 

Proposition 6. Let $X \longrightarrow Y$ be an étale morphism of $k$-varieties, then $J_m(X) \cong J_m(Y) \times_Y X$ for any $m \in \mathbb{N} \cup \left \{\infty \right \}$.

 

Proof. We prove that equality on the level of functors of points. We have:
\begin{equation*}
   \mathrm{Hom}(-.J_m(X)) \simeq \mathrm{Hom}(- \times_k \mathrm{Spec}(k[[t]]/(t^{m+1})), X)
\end{equation*} and
\begin{equation*}
    \mathrm{Hom}(-,J_m(Y) \times_Y X) \simeq\mathrm{Hom}(-,J_m(Y)) \times\mathrm{Hom}(-,X) \simeq \mathrm{Hom}(- \times_k \mathrm{Spec}(k[[t]]/(t^{m+1})), Y) \times \mathrm{Hom}(-,X)
\end{equation*} For a $k$-scheme $Z$ we consider the diagram:

File gửi kèm  Screenshot 2022-04-13 at 18-08-09 m2thesis.png   9.81K   24 Số lần tải

We have to show that  for a $Z$-valued $m$-jet of $Y$ and $Z$-valued $0$-jet of $X$ induce a $Z$-valued $m$-jet of $X$ (the other direction is obvious). Since $X \longrightarrow Y$ is étale, it is formally étale so such a dashed arrow exists.

 

Corollary 7. Let $U \hookrightarrow X$ be an open immersion, then $J_m(U) \hookrightarrow J_m(X)$ is also an open immersion for any $m \in \mathbb{N} \cup \left \{\infty \right \}$.

 

By an analogous method, we deduce the following important result:

 

Proposition 8. Let $X$ be a smooth $k$-scheme of dimension $d$. Then $J_m(X)$ is locally a $\mathbb{A}^{md}$-bundle over $X$. In particular, $J_m(X)$ is smooth of dimension $(m+1)d$. In the same way, $J_{m+1}(X)$ is locally a $\mathbb{A}^d$-bundle over $J_m(X)$.


Học và học lại ngành của bạn

04-03-2022 - 04:14

Gần đây mình làm thesis M2, khối lượng kiến thức chuẩn bị khá là nhiều, may là mình cũng mang trong túi một ít nhưng vẫn gặp không ít khó khăn như: chứng minh định lý này có cần thiết không, tại sao định nghĩa này lại có hình thức như vậy hoặc chỉ đơn giản là không thể nhìn thấy các khái niệm kết nối như thế nào. Thế nên mình mở topic này vừa là một bài dịch của mình trên blog của giáo sư Terry Tao và cũng là một topic thảo luận phương pháp học toán chủ yếu ở level research, topic sẽ không giới hạn các ngành học hay chủ đề, phương pháp và bất cứ ai có câu hỏi hay đóng góp về cách học có thể post vào đây.

Bài dịch dưới đây lấy nguồn từ, learn and relearn your field, mình sẽ chỉ tập hợp một số bình luận mình thấy có ích.

Học và học lại ngành của bạn

Terence Tao:

"Ngay cả những sinh viên khá tốt, khi họ tìm được lời giải của bài toán và trình bày lại nó một cách gọn gàng, họ gập sách lại và làm một điều gì khác. Làm như vậy, họ đã bỏ lỡ một giai đoạn quan trọng và có tính định hướng của công việc... Một người thầy giỏi nên hiểu và gây ấn tượng để sinh viên của ông ấy hiểu rằng không có bài toán nào có thể bị vét cạn hoàn toàn. Một trong những nhiệm vụ đầu tiên và quan trọng nhất của người thầy là không được làm cho sinh viên có ấn tượng rằng các vấn đề toán học không có mấy kết nối với nhau, và hoàn toàn không có kết nối gì với những thứ khác. Chúng ta có một cơ hội tự nhiên để khảo sát lại bài toán khi ta xem lại lời giải của nó."

George Polýa, Làm thế nào để giải nó.


Học là không bao giờ có điểm dừng, kể cả trong chuyên ngành mà bạn đã chọn; ví dụ thì tôi vẫn học những điều gây bất ngờ về giải tích điều hòa cơ bản, hơn mười năm sau khi tôi viết xong luận án của mình về chủ đề này.

Chỉ vì bạn biết phát biểu và chứng minh của một Bổ Đề Cơ Bản X không có nghĩa rằng bạn nên bỏ qua nó; thay vào đó, bạn nên đào sâu hơn tới chừng nào bạn thật sự hiểu về bổ đề đó:
  • Bạn có thể tìm các chứng minh khác không?
  • Nếu bạn biết hai chứng minh, bạn có biết hai chứng minh này tương đương tới mức nào không? Chúng có mở rộng theo các hướng khác nhau không? Có những điểm chung gì ở hai chứng minh? Điểm mạnh và yếu của từng chứng minh là gì?
  • Bạn có hiểu tại sao từng chi tiết trong giả thiết lại cần thiết không?
  • Những mở rộng nào đã được biết/ phỏng đoán/ heuristic?
  • Có phiên bản nào yếu và đơn giản hơn nhưng vừa đủ cho ứng dụng không?
  • Có những ví dụ cụ thể nào về bổ đề này để thực hành?
  • Khi nào thì dùng bổ đề này, khi nào không?
  • Kiểu bài toán nào bổ đề này có thể giải và kiểu bài toán nào mà nó không đóng góp gì?
  • Có phiên bản tương tự nào của bổ đề này trong các lĩnh vực khác của toán học hay không?
  • Bổ đề này có nằm trong một mô hình hay một chương trình nào lớn hơn không?
Sẽ rất hữu ích nếu bạn thuyết trình về lĩnh vực của mình hoặc viết ghi chú, tài liệu lưu trữ, ngay cả khi nó chỉ được dùng bởi mỗi bạn. Sau cùng bạn sẽ nội bộ hóa được những kết quả rất khó chỉ bằng những tốc ký tinh thần hiệu quả; điều này không chỉ cho phép bạn sử dụng những kết quả này một cách dễ dàng hay cải thiện khả năng của bạn trong ngành học mà nó còn giải phóng khoảng không tinh thần để học những thứ khác.

Một cách hiệu quả khác để học nhiều hơn về một ngành là nhặt lấy một bài báo cốt lõi, nền tảng của ngành này, sau đó tìm theo các trích dẫn trong bài báo (i.e. tìm các bài báo trích dẫn bài báo cốt lõi). Ngày nay có rất nhiều công cụ để tìm trích dẫn nghiên cứu; ví dụ, MathsciNet có chức năng này, và thậm chỉ chỉ một tìm kiếm thông thường cũng có thể tìm được một số thứ mà trước đó ta không ngờ tới.

Anonymous:

Thưa giáo sư Tao,

Đầu tiên, tôi xin cảm ơn vì những lời khuyên và những hướng dẫn hữu ích của giáo sư. Theo đó, tôi muốn hỏi giáo sư về một vấn đề nghiêm trọng mà tôi đang đối mặt và hy vọng giáo sư có thể giúp tôi: tôi là một sinh viên PhD và ngành của tôi là hình học đại số số học (arithmetic algebraic geometry). Như giáo sư biết, ngành này rất rộng. Nên nếu tôi muốn học nó và cày cuốc qua tất cả các chi tiết trong các chứng minh thì tôi đoán, tôi sẽ không bao giờ (i.e. trong một khoảng thời gian giới hạn) có thời gian để làm việc với bài toán mình đang nghiên cứu và sẽ không có bất cứ một kết quả nào đạt được. Nhưng, không học và đọc luôn cho tôi cảm giác tôi bỏ lỡ và tôi sẽ mất tự tin vì điều đó.

Tôi sẽ rất cảm kích nếu giáo sư có thể cho tôi vài lời khuyên. Xin cảm ơn trước.

Matthew Emerton:

Gửi Anonymous,

Tôi hy vọng bạn sẽ ok với việc có người khác trả lời câu hỏi của bạn thay vì giáo sư Tao.

Hầu hết những người làm việc trong ngành hình học đại số số học (không chỉ sinh viên) chịu đựng vấn đề mà bạn mô tả tới một mức độ nào đó. Ngành học là thực sự rộng, và để đọc hết mọi thứ với tư cách là một sinh viên, ngay cả chỉ những thứ mà bạn cần để giải bài toán của mình, là vô cùng bất khả thi.

Tôi sẽ gợi ý vài điều sau: một nền tảng tốt trong hình học đại số là bắt buộc. Hầu hết sinh viên trong ngành hình học đại số, tất cả mọi cấp độ, phải trải qua cái nghi thức thông hành tên là "Hartshorne": tức là đọc cuốn sách của Hartshorne, chủ yếu là chương 2 và 3, và giải rất nhiều bài tập trong đó. Nếu trốn tránh làm điều này thì ít nhiều là không thể, và trong nhiều trường hợp là không khôn ngoan. Và một khi bạn đã giải nhiều/hầu hết bài tập trong Hartshorne, bạn sẽ có thêm chút tự tin trong hình học đại số, lý thuyết lược đồ (scheme theory) và đối đồng điều (cohomology).

Cùng lúc đó, có những cuốn sách khác cũng nên được ngó qua vì chúng nhấn mạnh vào một số khía cạnh cụ thể hơn là Hartshorne, những khía cạnh đặc biệt quan trọng trong hình học đại số số học - ví dụ như red book của Mumford. Bạn nên đọc song song Hartshorne cùng một số cuốn như vậy.

Một cuốn sách chuẩn mực khác để đọc là Cornell-Silverman (ngày nay, phụ thuộc vào hướng đi yêu thích của bạn, có thể là Cornell-Silverman-Stevens - nhưng cái này mang tính số học hơn trong khi Cornell-Silverman có tính hình học). Đây không phải là một cuốn sách dài, và nó chứa rất nhiều thông tin. Hơn nữa, nó được viết ra để giải trình chứng minh của Faltings và giả thuyết Mordell & Tate, bạn sẽ thấy cách cỗ máy hình học hoạt động để giải một bài toán cụ thể. Như đã nói hơn một lần, điều này là quan trọng. (và tôi nên bổ sung rằng không cần thiết để đọc hết cả cuốn - ví dụ, bên dưới tôi sẽ nói rằng nên bỏ qua chương về mô hình Neron, trừ khi bạn thực sự không muốn vậy)

Một điều mà tôi sẽ khuyên là *không* nên làm với hầu hết sinh viên, là đọc quá nhiều EGA và SGA. Nó sẽ ngốn rất nhiều thời gian, và nó thực sự nguy hiểm nếu mọi sự không đi đến đâu. Cụ thể, để an toàn, khi bắt đầu sự nghiệp, bạn nên học về đối đồng điều etale nhưng chỉ như một hộp đen. (về sau, nếu bạn cần những chi tiết cụ thể rằng nó được xây dựng như thế nào, bạn có thể quay lại và học chúng.)

Điều đáng giá *là*, hiểu rõ về đối đồng điều bó (sheaf cohomology) trong ngôn ngữ cổ điển. (Phần bắt đầu cuốn sách của Borel về đồng điều giao (intersection homology), mà sao cùng là về các bó perverse, và vân vân, nhưng nó bắt đầu với bó constructible và sáu toán tử của Grothendieck là một chỗ để làm điều này.) Điều nhấn mạnh là *hầu hết* ứng dụng của đối đồng điều etale chỉ sử dụng hình thức luận lý thuyết bó (sheaf theoritic formalism) như người ta làm trong ngôn ngữ cổ điển (i.e. các đa tạp trên trường phức, với topo phức của chúng), và các định lý mang tính kĩ thuật chính ở đây (đổi cơ sở riêng (proper base-change), tính acyclic trơn (smooth acyclicity), chu trình triệt tiêu và nearby (vanishing and nearby cycles)) chính xác được định hướng để chứng minh đối đồng điều etale, bó etale constructible, và sáu toán tử của Grothendieck trong ngôn ngữ etale hoạt động giống hệt như trong ngôn ngữ cổ điển. Do đó nếu một người hiểu ngôn ngữ cổ điển tốt, anh ta sẽ đủ tự tin rằng trực giác của mình có thể áp dụng trong ngôn ngữ etale.

Một điều rất đáng học là bài báo đầu tiên của Deligne về các giả thuyết Weil. Bạn sẽ thấy cách ông ấy dùng đối đồng điều etale để chứng minh một định lý khủng khiếp, và bạn sẽ thấy hầu như những gì ông ấy dùng là những tính chất có một phiên bản giống hệt (và không quá khó để chứng minh) trong ngôn ngữ cổ điển. Do đó có một trực giác tốt về lý thuyết bó cổ điển sẽ giúp bạn hiểu được rất nhiều chứng minh.

Ở khía cạnh tiếp theo, tôi muốn quay lại điểm tôi đã nói ở trên: một cách để học một lĩnh vực là, thay vì học các chi tiết kí thuật và nền tảng, thì ta học xem cách chúng được dùng để giải các vấn đề như thế nào. Ví dụ, lý thuyết Hodge p-adic là một công cụ khác đóng vai trò rất quan trọng trong hình học đại số số học, và nó đòi hỏi một nền tảng kĩ thuật đáng gờm. Nhưng, cũng giống như đối đồng điều etale, nó có một hình thức luận đẹp đẽ để người ta có thể sử dụng mà không cần quá lo ngại về các chứng minh và toàn bộ nền tảng lý thuyết.

Các mô hình Neron của các đa tạp abel cũng tương tự: người ta hầu như không bao giờ dùng gì liên quan đến xây dựng của chúng (người ta chỉ cần biết chúng tồn tại) khi sử dụng chúng. Nên hoàn toàn an toàn khi ta xem các xây dựng của chúng như một cái hộp đen. (và nếu bạn thật sự cần các xây dựng này, có một bài báo về nó trong Cornell-Silverman.) Điều quan trọng là hiểu rằng sự tồn tại của chúng được dùng như một công cụ trong các lập luận khác. Vì nền tảng toán học của riêng tôi, chỗ tự nhiên nhất để tôi chỉ ra là nhánh học về đường cong modular, và dạng modular bởi Mazur, Ribet, và Wiles. Nói riêng, một vài tiết đầu tiên trong Inventiones 100 article của Ribet đưa ra một ví dụ rất tốt về cách mà cả trăm trang lý thuyết (rất nhiều về mô hình Neron, a một chút SGA 7) được tóm tắt trong 10 trang "kiến thức để làm việc".

Nếu bạn hỏi những người khác, họ có thể đưa ra những tham khảo khác tương tự cho những chủ đề mà bạn cần, tóm gọn "tất cả những thứ bạn cần" chỉ trong một số ít trang giấy, hơn là cả trăm trang giấy của các nguồn gốc.

Cuối cùng, bạn làm gì để xây dựng sự tự tin của mình sau khi bạn đã bỏ hững cả trăm trang giấy như vậy?

Về điều này, nên nhớ rằng dù trong trường hợp nào thì các nhà nghiên cứu toán học không bao giờ có mục đích tối hậu và đọc và học toán (dù cho phải làm vậy), nhưng là làm toán. Nên theo một nghĩa nào đó sự tự tin của bạn như một nhà toán học (ít nhất trên lý thuyết) là một cái gì đó hơi trực giao với những chứng minh cơ bản mà bạn đã tích lũy được.

Điều bạn cần, (như tôi đã nói bên trên) đó là hiểu cách một số kĩ thuật quan trọng được sử dụng để giải các vấn đề thú vị.

Một cách để làm điều này là bắt đầu càng sớm càng tốt nhảy vào lãnh địa nghiên cứu.

Người hướng dẫn của bạn có thể gợi ý các bài báo, và (phụ thuộc vào điều bạn thích) bạn có thể chọn một số "kinh điển" cho riêng bạn: bài báo đầu tiên của Deligne về các giải thuyết Weil, bài báo Inventiones 100 của Ribet, bài báo của Faltings trong Cornell-Silverman, bài báo của Serre ở Duke 54 về các giả thuyết của ông cho dạng modular, biểu diễn Galois, hoặc bất kì cái nào khác. Cố gắng tìm bài báo hấp dẫn với bạn, dĩ nhiên đảm bảo nó được viết tốt, và bạn cảm giác có thể thu được chút hiểu biết nào từ đó (ít nhất là phát biểu của định lý chính) - nhưng đừng hy vọng hiểu hầu hết các kĩ thuật cốt lõi của bài báo ngay từ ban đầu. Mục tiêu của bạn là lấy được chút cảm giác rằng làm thế nào có thể điều phối mọi nguồn lực của lý thuyết trừu tượng để giải các vấn đề cụ thể, bằng cách xem người ta làm nó. Nó sẽ cần nhiều thời gian và kiên nhẫn, và nghiên cứu cẩn thận để làm vậy - nhưng nói cho cùng thì điều đó đáng để làm.

Một điều đáng chú ý khác là trích dẫn - nó có thể dẫn bạn tới các nguồn khác chứa các kiến thức nền tảng cần thiết. Đeo bám kiến thức nền cần thiết bằng cách đi từ trên xuống thì thường hiệu quả hơn xây mọi thứ từ dưới lên. (điển hình thì nếu các nhà toán học cần học một cái gì đó mới - họ bắt đầu với một bài báo mà họ thích, và sau đó đi ngược về nền tảng một cách vừa đủ để lấp đầy những chi tiết mà họ không hiểu chỉ bằng việc đọc bài báo gốc.)

Một cách quan trọng khác để tự tin hơn (hiệu quả hơn học lý thuyết mới nhiều!) là tự tay bạn giải bài toán. Bạn có thể bắt đầu với đống bài tập trong Hartshorne, cũng như bất cứ bài tập nào mà bạn thấy xung quanh. Nhưng một số lúc bạn sẽ cần những vấn đề chuyên môn hơn để làm. Bạn có thể hỏi người hướng dẫn của mình một bài toán để tự giải. (một số người hứng dẫn làm điều này: thay vì bắt đầu với một bài toán mang tính nghiên cứu để viết luận án, họ giúp sinh viên của mình giải những bài toán nhỏ, dễ kiểm soát hơn.)

Nhưng nói cho cùng, một khi bạn bước vào nghiên cứu, bạn sẽ không bao giờ hết nguồn cung bài toán: lấy bất kì bài báo nào và xem nó, tìm một bổ đề kĩ thuật mà bạn có thể hiểu giả thiết, và xem xem bạn có tự chứng minh được bổ đề này không. Cố gắng không "ăn gian" bằng cách đọc chứng minh có sẵn (nhưng bạn cũng có thể liếc xem bên dưới có gì, chỉ để đảm bảo chứng minh của cái bổ đề không tới tận 5 trang). Nhưng, nếu bạn không thể chứng minh nó sau những nỗ lực nghiêm túc thì bạn vẫn ở một vị trí tốt hơn ban đầu, bạn có thể thực sự cảm nhận lập luận của tác giả - và bạn sẽ ghi nhớ bất cứ thủ thuật hay kĩ thuật nào mà họ dùng!

Luyện tập kiểu này một cách mà các nhà toán học phát triển kĩ năng nhìn lướt qua một bài báo trong ngành của họ và vẫn nắm được toàn bộ các chi tiết trong bài báo đó. (Một kĩ năng mà tôi thấy vô cùng ấn tượng khi tôi còn là sinh viên!)

Và tất nhiên bạn có thể cố tạo ra và giải những vấn đề của riêng mình (thêm một kĩ năng quan trọng để phát triển.) Do tôi đã viết quá dài, tôi sẽ không nói thêm nữa ở đây.

Tôi hy vọng điều này sẽ có ích.

Trân trọng,

Matthew.

________________________________

Khi nào rảnh sẽ dịch thêm nếu không anh em nào rảnh vào dịch giúp, có rất nhiều topic ntn trên MSE, MO.

Người dịch: Phạm Khoa Bằng, Université de Rennes 1.